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Abstract

Résumé
Le problème de la résistance à la conduction aux interfaces de contact représente un
défi important en ingénierie. À ces interfaces, la section réduite pour la conduction –
définie comme la disparité entre les zones de contact réelles et nominales – entraı̂ne
une augmentation de la résistance. Ce phénomène affecte à la fois la conductivité
thermique et électrique, marqué par un écart de température ou de potentiel à
l’interface. Par conséquent, c’est un phénomène multi-échelle, découlant de la
rugosité des surfaces en contact et ayant son origine à l’échelle microscopique.
L’objectif de cette étude est d’approfondir notre compréhension des origines de ce
phénomène.
Pour aborder le problème de conduction à l’interface de contact, une méthode
des éléments de frontière rapide (BEM) a été mise en œuvre. Cette méthode,
bénéficiant d’une formulation précise en demi-espace, démontre sa précision et sa
cohérence géométrique. Simultanément, le Fast-BEM contourne la complexité ex-
cessive O(N2) associée au stockage et à la construction d’une matrice dense, qui a
été un goulot d’étranglement pour la BEM classique. Cette amélioration des per-
formances est obtenue grâce à l’utilisation de matrices hiérarchiques (H-matrices),
qui bénéficient d’une approximation de bas rang, telle que l’approximation croisée
adaptative plus (ACA+). Cette mise en œuvre réduit considérablement le stock-
age en mémoire, encore amélioré par l’utilisation de la décomposition en valeurs
singulières (SVD), et est finalement exploitée pour résoudre le problème avec un
solveur itératif GMRES. Par conséquent, ce nouvel outil a démontré sa capacité à
aborder des problèmes de conductivité impliquant des géométries complexes.
L’étude de la conductivité commence par une tache conducteur unique sur un
demi-espace. Initialement, la forme la plus simple d’une tache non simplement
connecté, un anneau, est examinée. Elle est suivie par une investigation de formes
”multi-pétales”, telles que des fleurs, étoiles et engrenages, révélant comment le
nombre de pétales impacte la conductivité. L’étude de taches isolées se conclut
par un examen élaboré de géométries auto-affines. Pour les taches multi-pétales
et auto-affines, des modèles phénoménologiques sont développés, basés sur des
caractéristiques géométriques pertinentes, incluant l’exposant de Hurst et les trois
premiers moments spectraux du contour auto-affine. Ces modèles permettent de
prédire la conductivité pour un nombre infini de ”pétales” et dans la limite auto-
affine fractale. Le rôle de la dimension fractale est également souligné, accompagné
d’une brève exploration des flocons de Koch.
L’étude s’étend à un scénario multi-taches plus réaliste, employant le modèle de
résistance à la constriction de Greenwood étendu pour inclure des taches multi-
pétales, validé par des simulations BEM. Enfin, l’étude examine la conductivité des
zones de contact réelles avec des morphologies complexes produites par le contact
élastique entre surfaces rugueuses. Cette étude finale utilise la méthode FFT-BEM
pour résoudre le problème de contact et de conductivité rugueux, en s’appuyant
sur une analogie de poinçon plat entre la rigidité normale et la résistance thermique
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ou électrique. De plus, le problème des surfaces rugueuses oxydées est exploré,
fusionnant FFT-BEM et Fast-BEM avec des ı̂lots d’oxyde isolants construits à partir
d’un champ aléatoire auto-affine. Un modèle phénoménologique préliminaire est
également suggéré.
Cette thèse représente une synthèse de la mise en œuvre de H-matrices pour le
Fast-BEM, combinée à une caractérisation géométrique détaillée et une analyse
physique complète de la résistance à la constriction. Cette analyse s’étend des
interfaces conductrices à une seule tache aux zones de contact oxydées de topologie
complexe produites par le contact de surfaces rugueuses. Une attention particulière
a été accordée à maintenir la précision des résultats numériques. De plus, la mise en
œuvre du Fast-BEM développée est disponible en open-source pour une utilisation
plus large.

Abstract
The problem of conduction resistance at contact interfaces represents an impor-
tant engineering challenge. At these interfaces, the reduced section for conduction
– defined as the disparity between the actual and nominal contact areas – results
in increased resistance. This phenomenon affects both thermal and electrical con-
ductivity, marked by a temperature or potential gap at the interface. Hence, it is a
multi-scale phenomenon, stemming from the roughness of contacting surfaces and
originating at the microscopic level. The objective of this study is to deepen our
understanding of this phenomenon’s origins at the microscopic scale.
To address the conduction problem at the contact interface, a Fast-Boundary El-
ement Method (BEM) has been implemented. This method, benefiting from an
accurate half-space formulation, demonstrates its precision and geometric consis-
tency. Simultaneously, the Fast-BEM circumvents the excessive O(N2) complexity
associated with storing and constructing a dense matrix, which has been a bottle-
neck for the classical BEM. This performance enhancement is achieved through the
use of hierarchical matrices (H-matrices), which benefit from a low-rank approx-
imation, such as Adaptive Cross Approximation+ (ACA+). This implementation
significantly reduces memory storage, further enhanced by employing Singular
Value Decomposition (SVD), and is ultimately exploited in solving the problem
with a GMRES iterative solver. Consequently, this new tool has demonstrated its
capability to tackle realistic conductivity problems involving complex geometries.
The conductivity study starts with a single conductive spot on a half-space. Initially,
the simplest form of a non-simply connected spot, an annulus, is examined. This
is followed by an investigation of ”multi-petal” shapes, such as flowers, stars, and
gears, revealing how the number of petals impacts conductivity. The study of
single spots concludes with a elaborate examination of self-affine geometries. For
both multi-petal and self-affine spots, phenomenological models are developed,
grounded in relevant geometrical characteristics, including the Hurst exponent
and the first three spectral moments of the self-affine contour. These models enable
predicting conductivity for an infinite number of ”petals” and in the fractal self-
affine limit. The role of fractal dimension is also underscored, accompanied by a
brief exploration of Koch snowflakes.
The study extends to a more realistic multi-spot scenario, employing the Green-
wood constriction resistance model extended to include multi-petal spots, vali-
dated through BEM simulations. Ultimately, the study examines the conductivity
of true contact areas with complex morphologies produced by elastic contact be-
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tween rough surfaces. This final study utilizes the FFT-BEM method to resolve
rough contact and conductivity problem, drawing on a flat-punch analogy be-
tween normal stiffness and thermal or electrical resistance. Additionally, the issue
of rough oxidized surfaces is explored, merging FFT-BEM and Fast-BEM with in-
sulating oxide islands constructed from a self-affine random field. A preliminary
phenomenological model is also suggested.
This thesis represents a synthesis of H-matrices implementation for Fast-BEM,
combined with detailed geometrical characterization and a comprehensive physical
analysis of constriction resistance. This analysis spans from single-spot conductive
interfaces to oxidized contact areas of complex topology produced by the contact of
rough surfaces. Particular attention has been devoted to maintaining the precision
of the numerical results. Furthermore, the developed Fast-BEM implementation is
available as an open-source for broader use.
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Manuscript organization

Chapter 1: Introduction & the State of the Art This chapter sets the foundation for our
exploration into the contact of surfaces and conductive resistance. Section 1.1 delves into
the contact of smooth surfaces, drawing parallels with conductive resistance. It covers the
mechanics of contact problems, the analogy to conductive resistance, and the intricacies of
hardness and plastic deformation. Section 1.2 shifts the focus to the contact of rough sur-
faces, investigating the physics behind it, various models of roughness, analytical models
for contact of rough surface, the concept of plasticity index, and numerical methods em-
ployed in this context. In section 1.3, we concentrate on conductive resistance, discussing
the real conductance effect, material coatings, oxides and thermomechanical coupling.

Chapter 2: Numerical Methods Chapter 2 is dedicated to numerical methods focusing
on conduction. It starts with an integral formulation for conduction, addressing the con-
ductivity problem, the principle of reciprocity, the fundamental solution, and the solution
for two-dimensional problems, among other topics. This is followed by an exploration
of the classical Boundary Element Method (BEM): discretization, interpolation, numeri-
cal integration, and validation. The main focus is however put on an in-depth look at the
Fast-BEM constructed through the concept of hierarchical matrices. It discusses approxi-
mation construction, error analysis, H-matrix theory, and practical applications of these
approximations, all demonstrated in numerous examples.

Chapter 3: Conductivity of a Complex Shaped Contact Spot In Chapter 3, the discus-
sion narrows down to the conductivity of single contact spots with complex shapes. It
starts with the conductivity of not simply connected spots, presenting analytic and fi-
nite element results. The novel results are obtained by examining the conductivity of
flower-shaped and self-affine spots, providing insights into the link between conductive
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properties and geometrical characteristics. Phenomenological models for these geome-
tries are constructed. A brief discussion of the Koch snowflake conductivity is also
provided. The chapter is complemented by a discussion of a simple superposition model
applied to two-mode spots.

Chapter 4: Multi-Spot Conductivity and the Effect of Oxides This chapter addresses
the multi-spot conductivity and the influence of oxides. It starts with a simple multi-spot
contact in which self-resistance is adjusted to go beyond circular spots of Greenwood’s
model. These results are compared with full BEM analysis and a very good match is
found. Accuracy of the FFT-BEM method for conductivity problem using incremental
stiffness and flat punch analogies are addressed. But the main focus of the chapter is
the combination of the FFT-BEM with the Fast-BEM for the conductivity problem for the
contact of a rough spherical indenter with a half-space for clean and oxidized surface. A
simple model based on a random self-affine field is used to construct oxide distribution.
In the set-up a multitude of realizations for different roughness and oxide parameters
were studied to capture mean trends and dispersion of results.

Chapter 5: Conclusion This chapter provides a comprehensive conclusion of the entire
document, summarizing the key findings, implications, and potential areas for future
research.

Appendices The appendices offer detailed insights into specific methods and models
discussed in the document. Appendix A presents a transient solution for the thermal dif-
fusion problem between two bars. Appendix B provides a deeper look into numerical
methods associated with the Fast-BEM, covering such aspects as singular and quasi-
singular integration, reference elements, and others. Appendix C focuses on the geomet-
rical characteristics of spots with complex shapes as well as the physical consistency of
constructed phenomenological models.
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Résumé du Chapitre I
Cette partie vise à introduire le problème de la résistance de conduction crée par
l’interface de contact, et dresser le cadre d’étude de cette thèse. A l’interface de con-
tact, la réduction de la section conductrice, effet de la rugosité des pièces en contact,
créer une diminution de la conductivité, et une augmentation de la resistance de
conduction. L’étude de la résistance de conduction, autrement appelée résistance
de constriction, apparait comme un problème couplé à la mécanique de contact en-
tre surfaces rugueuses. Cette introduction sera organisée en trois sous-parties. La
première sous-partie présente le problème de mécanique de contact entre pièces
lisses, dressant des parallèles avec le problème de conduction de contact. La sec-
onde sous-partie introduira le problème de contact mécanique entre les surfaces
rugueuses. Enfin cette partie sera conclue par la présentation du problème de
conduction induite par des aires réelles de conduction.

15
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Abstract for Chapter I This chapter introduces the problem of con-
duction resistance of contact interfaces, setting the framework for this thesis. At the
contact interface, the reduction of the conducting section due to contact of rough
surfaces results in an increase in conduction resistance. The study of constriction
resistance appears as a coupled problem between the conduction and the contact
mechanics between rough surfaces. This introduction is organized into three sec-
tions. The first one presents the problem of contact mechanics between smooth
surfaces, drawing parallels with the problem of conduction. The second one intro-
duces the mechanical problem between rough surfaces in contact, roughness and
associated analytical to handle contact are presented. The final section discusses
the problem of conduction, oxidation and related phenomena.

1.1 Contact of smooth surfaces and a conductivity analogy

The mechanical contact problem is well-known as a non-linear problem in which the con-
tact surface changes with the load. The analytical handling of contact problems is thus
very limited. Numerical methods have proven highly effective in solving these problems
and have undergone significant development especially within the finite element commu-
nity [Kikuchi and Oden, 1988, Wriggers, 2006, Yastrebov, 2013, Konyukhov and Izi, 2015,
Popp and Wriggers, 2018] successfully addressing various challenges from contact de-
tection and surface smoothing to optimal convergence and accompanied modeling of
various involved phenomena such as friction, lubrication, wear and thermo-mechanical
coupling.

Fig. 1.2 outlines the mechanical problem of two bodiesΩ1 andΩ2 brought in contact.
The potential contact surface,A should verify non-penetration/non-adhesion conditions:
the gap g is non-negative g ≥ 0 and the surface tractions are compressive. To define
the simples normal gap, one needs first to find for x ∈ ∂Ω1 the closest point y ∈ ∂Ω2 on
the counterpart surface such that ∀y′ ∈ ∂Ω2 : |x − y| ≤ |x − y′|. So the gap represents
the minimal signed distance for every point and is given by g = (x − y) · n(y). This
condition of non-negative gap is nothing but a non-penetration condition. To construct the
full set of Hertz-Signorini-Moreau conditions (HSM), the non-penetration condition should
be complemented by non-adhesion conditions σn = n ·σ ·n ≤ 0 and also by a complementary
condition, g σn = 0. These conditions are defined for all the points on the boundary.

g(X) ≥ 0 (1.1a)

σn(X) ≤ 0 (1.1b)

g σn(X) = 0 (1.1c)

The mechanical equilibrium in absence of inertial and volumetric forces is governed
by the second order partial differential equation

divσ = 0,

where σ is Cauchy stress. In addition, the mechanical problem includes boundary condi-
tion: prescribed displacements (Dirichlet conditions),

u = 0, on Γu

and prescribed tractions (Neumann condition),

σ.n = t, on Γ f

The second order stress tensor in the linear case follows Hooke’s law

σ = C : (ε − εth)
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Figure 1.1: Diagram for two bodies in contact

where C is the fourth order elasticity tensor and ε is the tensor of infinitesimal deforma-
tions, and εth corresponds to thermal deformations.

Figure 1.2: Relationship (multi-valued function) for the gap/contact traction defined by
the Hertz-Signorini-Moreau (HSM) condition.

The mechanical contact problem can be further complicated by the inclusion of addi-
tional physical coupling, such as thermal responses. Following Wriggers [Wriggers, 2006],
we can consider an illustrative example of thermo-mechanical coupled problem as shown
in Fig. 1.3. Two distinct scenarios exist: (b) the gap is open or (b) closed. In the static
regime of the thermal problem, the temperature of the bar is set at T1. As a result of
thermal expansion, the bar expands until it contacts the blue-colored wall, which is at
temperature T2. The bar is supposed homogeneous, with linear elastic properties, char-
acterized by the Young’s modulus E, the Poisson’s ration ν, and the thermal expansion
coefficient αT. Assuming T1 > T2 and the temperature of the bar at the contacting wall
is precisely T2, the bar undergoes localized shrinkage. This leads to intermittent on-off
contact, giving rise to thermal instability. The contact’s thermal condition can be charac-
terized in terms of flux exchange, which is governed by the conductance coefficient hc.
To mitigate the issue of thermal instability, this coefficient might be made dependent on
the pressure p exerted at the contact point. In Appendix A, we derive analytical solu-
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Figure 1.3: Thermal contact problem, with (a) an open gap, and (b) a closed gap, adapted
from [Wriggers, 2006]

tions for transient thermo-mechanical contact between two bars including insulating or
convective heat exchange conditions along the bars.

1.1.1 Contact problems in mechanics

Boussinesq problem

In some condition, the contact problem might be defined as a linear problem. For in-
stance, consider the contact problem with a known contact area, for a half-space under-
going elastic deformation. Then the contact conditions in some cases could be seen as
Dirichlet boundary condition. In a more general situation we aim to find such a pres-
sure distribution which would result in a surface displacement enabling to accommodate
the shape of the indenter. The link between surface pressure and displacements could be
formulated for linear material through a superposition of a fundamental solution for a
punctual normal force applied at the surface of a half-space z > 0. A harmonic function
Ψ derives from a divergence-free problem, which adheres to Laplace equation as presented
in [Green and Zerna, 1992, Barber, 2018]:

∆Ψ = 0 (1.2)

Boussinesq [Boussinesq, 1885] initially addressed this problem in 1885, providing a har-
monic function, in the frictionless problem, as illustrated in Fig. 1.4. This work, also
known as the Boussinesq problem is acknowledged as a handy solution as presented
by [Podio-Guidugli et al., 2014].

Figure 1.4: Action of a normal punctual load for a half-space geometry

This solution could be supplemented with a punctual tangent load known as Cerruti
problem. It is related to the contact problem with frictional forces at the contact area. The
related punctualΨ1 is also harmonic solution, i.e. it verifies the Laplace equation.

For the Boussinesq problem, the harmonic solution enables to get the normal stress
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component and the deflection at the free surface

σzz(x, y, 0) = −
∂2Ψ

∂z2 (1.3a)

uz(x, y, 0) = −2
1 − ν2

E
∂Ψ
∂z

(1.3b)

Accounting for the parametrization presented in Fig. 1.4, the harmonic solution is
expressed as follows.

Ψ = −
F

2π
ln (R + z), R =

√

r2 + z2, r2 = x2 + y2 (1.4)

This solution is axisymmetric, with r the radial distance between the load source position
and the observation point. This solution is singular at the point of load application,
which in fact inherits from the non-differentiability of a punctual load. Nevertheless,
the solution is integrable, which allows the application of the superposition principle. It
enables to define half-space’s response to an arbitrary pressure distribution as shown in
Fig. 1.5(a) for a pressure field p(x, y). Strictly speaking this solution is valid only for a flat
surface as presented in Fig. 1.5(b), but in practice, this solution is still quite accurate if
surface slopes remain gentle. The resulting surface deflection uz is defined as

uz(x, y) =
1 − ν2

πE

∫ ∫
A

p(ξ, η)
r

dξdη (1.5)

with r =
√

(x − ξ)2 + (y − η)2, x, y are the coordinate of observation point, ν is the Poisson
ratio, and E represents the Young’s modulus. The coefficient E∗ = E/(1 − ν2) stands for
the effective Young’s modulus. This relation aligns with convolution product of a kernel
function ∼ 1/r and the pressure field p(x, y).

Figure 1.5: Problem of deformation due to a normal continuous pressure in the realistic
configuration (a), and a flat interface (b), in a half-space

Examples of deformation profile

In the use case scenario of a circular contact area, the relation Eq. 1.5 might be applied.
Galin [Galin, 1961] provided a relation for a polynomial pressure field and its deformation
in the context of an elliptical contact spot. The following relation involves Pn and Q2n,
two polynomials of degrees n and 2n respectively, both functions of spatial variables x
and y.

uz(x, y) = Q2n(x, y)⇐⇒ p(x, y) = Pn(x, y)
(
1 −

x2

a2 −
y2

b2

)−1/2

With n = 0 and n = 1, this pertains to the pressure fields associated with a flat punch and
a parabolic profile, respectively. The parabolic profile aligns with an elliptical shape for
an indenter.

The constant p0 used above is the pressure value at the middle of the indenter. It
yields the definition of the gap function, g, such as,

g(x, y) = uz(x, y) − g0(x, y) − ω ≥ 0
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Flat punch for n = 0

uz = Q0 = ω (1.6a)

p(x, y) = p0

(
1 −

x2

a2 −
y2

b2

)−1/2

(1.6b)

a−a
uz

z = 0

z > 0

p(x, y)

Hertzian contact for n = 1

uz = Q2 = ω −

(
x2

2Rx
+

y2

2Ry

)
(1.7a)

p(x, y) = p0

(
1 −

x2

a2 −
y2

b2

)1/2

(1.7b)

g0

uz

a−a
z = 0

z > 0

p(x, y)

Where ω represents the increment of displacement, and g0 is the initial undeformed
profile of the indenter. The gap function is unknown in a general case, such for this
case, ignoring the value of ω. The two aforementioned examples represent fundamental
problems in contact mechanics. The problem with a parabolic indenter is better known
as the Hertz problem formulated in a very general case in [Hertz, 1881], it underpins many
other results in contact mechanics.

Flat punch. For the flat indenter geometry, the pressure field is singular at the edge of
the indenter. As argued by Johnson [Johnson, 1987] such a perfectly flat indenter should
not exist in reality. In practice, there is always a radius which makes the edge of the
flat punch curved, and thereby regularizes the stress field. Even though in any case, the
elastic energy deformation remains finite, similar to the case of a crack tip undergoing
elastic deformation. For the circular flat punch, with a = b, the total load is expressed as,

F =

2π∫
0

a∫
0

p0
rdrdθ√
1 − r2/a2

= 2πp0a2

The pressure field relates to the surface deflection, entailed to Eq. (1.5). The increment
of displacement, equal to the displacement at the flat indenter is expressed as follows,

ω =
1 − ν2

E
p0

∫ 2π

0

a∫
0

rdrdθ√
1 − r2/a2

=
1 − ν2

E
πp0a

It yields to the definition of an effective Young modulus E∗ = E/(1 − ν2). Substituting the
term p0 by ωE∗/πa, this leads to the expression of the load F.

F = 2E∗ωa

Despite the pressure singularity, the total load is well-defined. It is noteworthy that the
load proportional to the flat punch’s radius a, the Young’s modulus E∗, and the indent
parameter ω. The contact stiffness is then given by ∂F/∂ω = 2E∗a.
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Hertzian contact. This issue relates to the elastic deformation resulting from the contact
between two elliptical surfaces. The analysis is reduced to an elliptical profile facing
a half-space with a flat free surface. The elliptical shape’s parabolic profile pertains to
first terms in series expansion of an arbitrary locally convex shape, along the two x,
y-axis. In contrast, the flat surface is characterized by a zero curvature. The elliptical
profile can be defined by its semi-radii, a and b, or alternatively by the two curvatures,
Rx, and Ry, respectively. As such, the elliptical profile is resumed by the height function
g0 formulated as x2/(2Rx) + y2/(2Ry), a function integral to Eq. (1.7a). In the context of
spherical (parabolic) profiles, where Rx = Ry, the height function depends on the radial
coordinate r only.

This topic has been thoroughly explored in literature, with comprehensive treatments
available in key references such as [Barber, 2018, Johnson, 1987]. The expressions for ellip-
tical contact are based on elliptic integral functions and are influenced by the eccentricity
e =

√
1 − (a/b)2. In the case of a circular contact, the methodology adapts to assess the

pressure distribution, represented by p(r) = p0
√

1 − (r2/a2) for r ≤ a within the contact
zone. Integrating this pressure distribution yields the total load value.

F =
2
3

p0A

with A the circular contact area, A = πa2.
Similarly to the flat punch methodology, the evaluation of the deflection at the middle

point of the indenter yields a relation between penetration ω and the load F. The total
load is commonly expressed in terms of the contact radius a which is proportional to

√
ω.

F =
4E∗a3

3R
(1.8a)

a =
√

Rω (1.8b)

Therefore, the total load varies as a power law of ω with an exponent of 3/2 as P ∼ ω3/2.
The stiffness could be readily found as

∂F
∂ω
=
∂F
∂a
∂a
∂ω
= 2E∗a,

which is exactly equivalent to the stiffness of the flat indenter of the same radius.

Stress analysis. One can readily access expressions for the potential functionΨ involv-
ing the integration of a continuous pressure field, derived from Eq. (1.3). Timoshenko &
Goodier [Goodier and Timoshenko, 1970] and Johnson [Johnson, 1987] have provided in-
sight into this development. Expressions for stress components can be readily employed
through the application of integral functions. This gives access to the knowledge of stress
fields, then enables to compute the von Mises stress, denoted as σMises as

σMises =

√
1
2

(
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6τ2

xy + 6τ2
yz + 6τ2

zx

)
(1.9)

The figures Fig. 1.6, and Fig. 1.7 represents the von Mises stress field in a half space
which undergoes elastic deformation, for indenter of flat punch and parabolic profile,
respectively. The von Mises stress derives from the norm of a deviatoric stress tensor. It
pertains to the elastic deformation associated with shape distortion and with plasticity.
For the flat punch, in Fig. 1.6, the von Mises stress is capped at a value of 1.5p0, as
singular values arise at edges. Conversely, the von Mises stress is bounded in the case
of the Hertzian contact. It reaches a maximum value along the middle axis at a depth of
z ≈ 0.5a. This is the position where plasticity first appears.
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Flat punch

0 0.3p0 0.6p0 0.9p0 1.2p0 1.5p0

Figure 1.6: von Mises stress in an elastic
half-plane with a flat punch indenter

Hertzian contact

0 0.1p0 0.2p0 0.3p0 0.4p0 0.5p0

Figure 1.7: von Mises stress in an elastic
half-plane with a parabolic shape indenter

Rounded indenter. The issue with the flat punch configuration is the occurrence of
a singular value at its edge. However, as already mentioned this is not realistic, as
mathematically sharp edges never occur in actual applications. Instead, the edge of the
flat punch is more likely to be rounded. This situation can be modeled by considering the
indenter as being perfectly flat up to r ≤ ai, and then rounded for r ∈ [ai, ao]. This particular
aspect was investigated by Ciavarella [Ciavarella et al., 1998], with the resulting pressure
field illustrated in Fig. 1.8. As illustrated Fig. 1.6, in the flat punch configuration, singular
stress occurs on the edge of the indenter. Instead, the case of a rounded flat punch the peak
stress occurs within the contact zone. The influence of the edge curvature was specially
investigated by Ciavarella [Ciavarella et al., 1998]. The pressure field in the contact area
is revised as illustrated in Fig. 1.8.
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Figure 1.8: Normalized pressure field for a rounded indenter.

This problem aligns in meantime with the Hertzian problem when ai/ao
→ 0, and with

the flat punch problem when ai/ao
→ 1. In addition, this problem illustrates how small

changes in geometry might significantly affect the pressure field. This problem might



Paul Beguin 23

be also addressed by stress intensity factor. In this order, Sackfield [Sackfield et al., 2003]
has proposed an expression for the maximal pressure field involving kr a stress intensity
factor.

pmax ≈
1.8kr
√

ai − ao
(1.10)

This expression is correlated with experiences as presented [Hills et al., 2012]. It is ob-
servable that this pressure field leads to the formation of a partial slip area. Fretting wear
and fretting fatigue issues can arise in assemblies and are often prompted by specific de-
signs like dovetails in aircraft engine blades. Such fretting fatigue can eventually end
in failure, highlighting the need for a deeper understanding of the contact mechanics in
such situations. The domain of fretting-fatigue, delves into the mechanisms of failure and
wear, dealing with multi-physical problem involving oxidation, the presence of a so called
third body, and both adhesive and abrasive wear, as detailed in [Arnaud et al., 2021]. In
practical scenarios, the durability of a material is experimented by sliding a pad over a
specimen in repeating cycles. The pad-size is at the utmost importance, and notches are
first initiated on the edge of this latter [Dini et al., 2006, Araújo and Nowell, 1999].

1.1.2 Equivalence with conductive resistance

In stationary regime, the thermal and electrical conduction are equivalent. For the half-
space problem, the area of conduction is set equal toAc on its free-surface. Furthermore,
the stress-strain problem follows Laplace equation. Let’s denote the area of contact as
A. The correlation between mechanical and conduction problems has been highlighted
by Barber [Barber, 2003]. This relation involves comparing the potential functions, Ψ
and Φ, associated with the stress-displacement problem and the conduction problem,
respectively. This analogy presupposes the equality of the contact and conductive areas,
Ac = A. The contact problem operates under the assumption of the elastic regime and
infinitesimal strain. By analogy, the half-space exhibits constant isotropic conductivity
characterized by a constant K, see color boxes below.

Elastic problem

Partial differential equation in Ω:

∆Ψ = 0

Boundary condition

uz = −
2
E∗
∂Ψ
∂z
= ω, inA

σzz =
∂2Ψ

∂z2 = 0, in Ā

With

∂Ψ
∂z
→ 0, for z→∞

Total load

F =
∫
A

∂2Ψ

∂z2 (x, y, 0)dxdy

Conduction problem

Partial differential equation in Ω:

∆Φ = 0

j = −K∇Φ isotropic conduction

Boundary condition

Φ = Φ0, inAc

jn = −K
∂Φ
∂z
= 0, in Āc

With

Φ→ 0, for z→∞

Total flux

Q =
∫
Ac

∂Φ
∂z

(x, y, 0)dxdy
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At the initial stage, the bodies in contact undergo a displacement of ω. Subsequently,
an increment of displacement δω is applied, resulting in an increased load δF. The contact
area is assumed to remain unchanged during the displacement increment, implying that
A(ω + δω) ≈ A(ω). The elastic response is characterized by the superposition of two
harmonic functions, Ψ and Ψ′, corresponding respectively to the two increments of
displacement, ω and ω + δω. This leads to the establishment of a harmonic function,
Φ, which is relevant to a conduction problem, with appropriate boundary conditions as
outlined in the upper box.

∂2Ψ′

∂z2 (x, y, z) = −
E∗

2Φ0K
δω
∂Φ
∂z

(x, y, z)

The integration of the last expression over the contact areaA, enables the establishment
of a relation between the incremental load dF, and the conductive flux Q, on the left and
right hand side, respectively. The ratio Q/Φ0 represents the constriction resistance Rc, while
dF/dω denotes the stiffness. Those two variables could be expressed one from another as

C ≡
1

Rc
=

2K
E∗

dF
dω

The aforementioned constriction resistance derives from the reduction of section of
conduction at the contact interface, which result in curving current flux lines through
the conductive area. This topic of research was initiated by the pioneering works of
Holm [Holm, 1967] and Greenwood [Greenwood, 1966]. Their objective was to examine
the problem of conduction resistance caused by the contact interface, attributed to micro-
scale roughness. This will be further elaborated in Section 1.3.

Circular conductive area. To illustrate the aforementioned equivalence, one could look
at the problem of conductivity through a circular contact spot. This problem has a
well-known solution, as detailed in the books by Carlaw [Carslaw et al., 1962], and Mad-
husudana [Madhusudana, 1996]. In reality, this problem takes over developments from
the problem of indentation with a flat punch. Considering the displacement analogous to
the potential, the boundary condition is defined setting a constant potential, Φ0 over the
conductive area. The problem is parameterized by a cylindrical coordinate system, θ, r, z,
but due to axisymmetric properties, the system is simplified to r, z. The conductive area
is defined as r ≤ a, with a being the radius of the contact area. The normal flux, jn, is de-
fined by Eq. (1.11a). This enables to find the total flux, Q◦, as presented in Eq. (1.11b). The
flow through the contact point is equivalent to the pressure field, as indicated in Eq. (1.5),
exhibiting a similar singularity at the edge for r→ a.

jn(r) =
2KΦ0

π
√

a2 − r2
, for r < a (1.11a)

Q◦ =
∫
A◦

jn(r)rdrdθ = 4KΦ0a (1.11b)

Hence the constriction resistance R◦, follows from the ratio between the flux and the
potential set,

R◦ =
Φ0

Q◦
=

1
4Ka

(1.12)

It is noteworthy that the constriction resistance is inversely proportional to the radius
a, whereas the total flux Q◦ is proportional to the contact radius.



Paul Beguin 25

Hertzian contact. The problem of the Hertzian contact could be also used to emphasize
the aforementioned equivalence between the stiffness and the constriction resistance. The
stiffness is given by

dF
dω
= 2E∗

√

Rω = 2E∗a

Hence the constriction resistance R◦, using Eq. (1.1.2) we get

2K
E∗

dF
dω
= 4Ka =

1
R◦

It is noteworthy that the stiffness is not influenced by the height profile of the indenter.
The constriction resistance depends solely on the contact spot’s shape. For instance, for
a given circular contact spot, both the stiffness and the constriction resistance can be
equivalently studied by a parabolic or a flat punch indenter.

1.1.3 Hardness & plastic deformation

When the elastic regime is exceeded in ductile materials, it leads to plastic deformation
within the bulk material. Once plasticity appears, the contact leaves an imprint on the
contact surface. This imprint can be linked to the load by defining the Hardness property.
Plasticity in contact is a frequent issue as it influences the life-cycle properties of mate-
rials. Hertz also endeavored to explore this problem, but it has needed to wait for the
development of the theory of plasticity to get consistent development. For Hertzian con-
tact, repairs to the Brinell hardness test, the plasticity first occurs at a depth of 0.48a, when
either the von-Mises or Tresca stress reach the yield stress SY. Johnson [Johnson, 1987]
established a relationship between the hardness and the yield stress, according to either
the von Mises criterion or Tresca, as will be detailed below. The force needed to reach the
elastic limit is given by

P =
21.2S3

YR2

E∗2

Beyond this force, when the load is removed, an imprint remains on the surface. How-
ever, it requires larger force to leave a visible indentation, as the plastic zone is initially
embedded underneath the free-surface. Ultimately, when the load increases, the plastic
zone breaks through the free surface. The Hardness, H is defined as the ratio between the
load applied, P and the area of the observed permanent indentation A.

H =
P
A

(1.13)

Tabor [Bowden and Tabor, 1967] have reckoned the hardness with SY, as H = 2.8SY for the
Brinell test. But, this assumes that the load is constant over the contact area. Differently,
Meyer [Meyer, 1908] determined that P ∼ an, with a is the size of the observed permanent
indentation, its radius in the case of Brinell test, and n is the Meyer’s index. Considering
H is constant throughout the loading implies that n = 2. Alternatively, the Meyer’s
index can be defined as n = 2 + β, where β is attributed to the work-hardening, like the
power-law stress-strain approximation σ = (ϵp − ϵ)β in the plastic regime.

The hardness test have gave incentives for its investigation in the light of
numerical simulations. This was extensively studies for homogeneous and lay-
ered materials. Specifically, this led Komvopoulos [Ye and Komvopoulos, 2003,
Kogut and Komvopoulos, 2004] to establish a relationship between hardness, bulk elas-
tic modulus, and yield strength, again for the Brinell test with elastic-perfectly plastic
materials.

H
σY
= 0.9 + 0.37 log

( E∗

σY

)
This latter law is lower than the constant value 2.8 proposed by Tabor. Subsequently, nu-
merical computations expand this study to other shape of indenters, such as Berkovitch
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and Vickers pyramidal shapes [Lichinchi et al., 1998], employing FEM for instance.
The issue of plasticity in contact remains an important challenge for engineers, espe-
cially for concepting systems like rail-wheel, as studied by [Bower and Johnson, 1989,
Meymand et al., 2016]. The repeated passing of wheels could result in ratcheting. Such
a mechanism contributes to wear, as explored in [Jiang and Sehitoglu, 1999], and this can
eventually lead to failure, as presented in [Jiang and Sehitoglu, 1999].

1.2 Contact of rough surfaces

The exploration of contact between rough surfaces initially linked with the study of
Coulomb’s friction. But in general, roughness, a common phenomenon in nature, plays
a significant role in a variety of physical problems, ranging from nanoindentation prob-
lems [Kim et al., 2007] to geological faults [Rice, 2017]. From an engineering standpoint,
comprehending roughness is vital due to its impact on damage, wear, friction, lubrication
and fatigue. The study of roughness gained traction with the improvement of surface mea-
surement technologies. The process of characterizing roughness has undergone consid-
erable advancements too with, for example, a seminal paper from Nayak [Nayak, 1971].
Within the field of contact mechanics, the interest for studying roughness, expanded to
include investigations of the real contact areas, the concept that explained a lot of interfa-
cial phenomena. It entailed the development of analytical and, at later stages numerical,
methods to handling rough contact.

1.2.1 Physics of rough contact

Coulomb’s law explanation

At the macro-scale, for polished parts, there is no clear evidence that roughness might
play a significant role in the contact mechanics. In structural computations, boundary
surfaces are typically assumed to be smooth, and the contact area is considered equal to
its nominal definition. However, Bowden and Tabor [Bowden and Tabor, 1967] offered
insights into Coulomb’s law based on a different view. Specifically, they proposed that
the coefficient of friction is derived from adhesive theory of contact and the real contact
area. This real contact area constitutes a small fraction of the nominal one, where intimate
contact and plastic deformations occur. The hardness H relies on the applied load P
with the real contact area A, as detailed in Section 1.1.3. It means that the real contact
area grows proportionally to the load whatever the nominal contact area is A = P/H
Combining with Coulomb’s friction law, it results in the determination of the tangential
force required for sliding, Q, as follows,

Q = τA =
τ
H

P

with the definition of τ as the maximal local shear stress due to adhesion. Ultimately this
vision enables to retrieve the Coulomb’s law Q = µP at the macroscopic scale.

These explanations are backed by experimental measurement. Some of this evi-
dence emerges from electrical resistance measurements, as documented in [Holm, 1967,
Bowden and Tabor, 1967], while other findings come from optical observations, such as
those by Dyson & Hurst [Dyson and Hirst, 1954], particularly for polished metallic speci-
mens. These optical observations provide insights into the growth of the real contact area.
These areas are rippled with contact spots of few microns in size, and gathered within
cluster of about 0.1 mm. This reveals that there are at least two scales of dimension at
play, and as the load increases, the number of spots grows without much changing their
size.
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Profilometry problem

For engineer, the roughness is influenced by both the material and the manufacturing
process. For polished steel surfaces, the roughness may be on the order of a few microns,
which emphasized the necessity for precision in measurements. Various profilometry
techniques are available, with stylus (contact) measurement and optical and interfer-
ometric techniques. The contact measurement relies on a fine tip, crafted in a hard
material, that moves across the specimen’s surface or bends to touch the surface over a
grid of points. Notably, it spans a much greater horizontal distance relative to the verti-
cal distance, which is governed by the surface roughness. The operating mechanism of
this method is illustrated in Fig. 1.9.

Base

Column

Monitoring

unit

Measurement 
chain

Sensor

Stylus

Specimen

Fixation

Figure 1.9: Diagram of operation for the stylus profilometry, adapted from standard
ISO-3274-1196

Nevertheless, the stylus-based method is subject to certain uncertainties, as stud-
ied in [Lee and Cho, 2012]. These uncertainties arise from factors such as calibra-
tion, parameter settings, and even the stylus’s radius, as detailed in [Park et al., 2006,
Mendeleyev, 1997]. The verification of this method has motivated numerous studies in
turns, such as [Leach et al., 2015]. In current practice, its application is guided by stan-
dards, as referenced in [Blunt and Jiang, 2003].

Profilometry also encompasses other techniques, like optical measurements and
Atomic Force Microscopy (AFM). These methods rely on different operational principles,
which result in them being associated with distinct measurement ranges and amplitudes,
as depicted in Fig. 1.10.

Bearing area curve. The roughness profiles obtained give insight into the surface to-
pography. It encompasses the location of peaks, their respective heights, and curvatures.
The bearing area curve, denoted as B(h), represents the cumulative distribution of the pro-
file height, with h the depth variable. It is commonly assumed that the distribution of
heights aligns with a Gaussian distribution, as presented by Φ(h). Insofar, the bearing area
curve is represented by a Gaussian cumulative distribution.

Φ(h) =
1
√

2πσ
exp

− (h − h̄)2

2σ2

 ⇒ B(h) =
∫
∞

h
Φ(x)dx = 1 −

1
2

erf
(

h − h̄

σ
√

2

)
In practice, few real surfaces follow such a Gaussian distribution. The distribution

is notably affected by manufacturing process, as detailed in [Grzesik et al., 2007] and
by the service conditions. The bearing area curve is especially valuable to assess of
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Figure 1.10: Domains of validity for techniques of profilometry, adapted
from [Leach, 2014]

the isotropy of the surface or to measure the wear, as explored in [Kumar et al., 2000,
Las Casas et al., 2008]. Microscopical wear or local plasticity both result in the develop-
ment of plateaus near highest asperities.

1.2.2 Models of roughness

Archard’s model

In its pioneering work, Archard [Archard, 1957] proposed a model for rough surfaces. He
streamlines rough height profile such as protuberances on protuberances, as illustrated in
Fig. 1.11. This enables the establishment of a linear relationship between load and contact
surface. Archard conceives a spherical indenter adorned with smaller spheres, and so on.
This concept is an early representation of a model incorporating a fractal shape. Initially,
the contact solution between a plane and a sphere is described by the Hertzian contact,
leading to a relationship where A ∼ P2/3. At the second and third stages, the relationship
evolves to A ∼ P8/9 and A ∼ P26/27, respectively. Such a progression forecasts a relation
of proportionality between the contact area and the applied load.

Figure 1.11: Illustration of protuberances on protuberances model, at the third level,
designed by Archard and adapted from [Archard, 1953]

Self-affine surface and fractal dimension

Similarly, other rough surfaces can be characterized by deterministic function, such as
Weierstrass function Eq. (1.2.2). It looks like a Fourier series, but it also incorporates a
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wavenumber, γn, raised to the exponent n.

z(x) = h0

∞∑
n=1

γ(D−2)n cos
(
2πγnx/L0

)
Where D > 1 represents the fractal dimension. This function yields the definition of a
fractal height surface. Although the function is bounded, it is non-differentiable. This
appeals the description through Power Spectrum Density (PSD) and related to the squared
amplitude of each sinus component.

Figure 1.12: Height profile of Weierstrass function with γ = 2, D = 1.5; on the right - a
zoom on a portion of the original function.

Self-affine surface. The Weierstrass function may offer an initial insight into fractal
processes. In the 1970’s, fractal shapes were extensively explored, notably by Mandel-
brot [Mandelbrot, 1967, Mandelbrot, 1982, Mandelbrot, 1985]. Within this context, the self-
affine property is introduced to connect height characteristics with those of wavelength.
When the profile is magnified by a factor λ along the horizontal axis, it corresponds to
a magnification of λH along the vertical axis, epitomizing the self-affine properties. This
exhibits different scale of magnification.

z(x) ∼ l⇒ z(λx) ∼ λHl

With H being the Hurst parameter, defined in the range 0 ≤ H ≤ 1. This results in a lesser
vertical magnification compared to the horizontal when H < 1. The Hurst parameter is
linked to the fractal dimension, D through the equation H = n + 1 − D, where n is the
dimension of the object of interest (n = 1 for curve, n = 2 for surface).

Power spectral density

At the microscopic scale, the analysis might be reduced to focus on a representative
element of the surface. In this approach, the overall shape of the body is disregarded,
assuming the surface is nominally flat and periodic. Roughness is characterized by its
amplitude and wavelength. For describing the waviness of this periodic function, the
Fourier transform is extensively used.

F

(
z(kx, ky)

)
= 4π2

∫
R

z(x, y) exp
(
−2πi(kxx + kyy)

)
dxdy

This function is of complex value. The Fourrier transform is defined in terms of
(kx, ky), denoting the wavenumber variable. It can be also defined in terms of pulsation,
varying by a factor of 2π. Furthermore, the Power Spectral Density (PSD), Φ, serves as a
mesure of the magnitude in relation of the wavenumber (kx, ky). The PSD study needs of
a sufficiently large sample scale L.
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Φ(kx, ky) = lim
L→∞

1
4L2

∫ L

−L

∫ L

−L
z(x, y) exp

(
−2πi(kxx + kyy)

)
dxdy

The Auto-correlation function, denoted as R, also provides valuable insights into the
surface roughness. This function proves its capability for identifying correlation between
distant points. It could be also used to derive statistical features, including the standard
deviation, which is represented by σ2 = R(0, 0).

R(x, y) = lim
L→∞

1
4L2

∫ L

−L

∫ L

−L
z(x1, y1)z(x + x1, y + y1)dx1dy1

Another definition of the PSD function could be derived from the autocorrelation function
R as

Φ(kx, ky) =
∫
R
R(x, y) exp

(
−i2π(kxx + kyy)

)
dxdy

Statistical analysis

In practice, rough surfaces involves random process, in contrast to the deterministic
nature of the Weierstrass function. For deterministic surfaces, the key geometric features
are often straightforward: for example, in a simple sinusoidal profile, the entire geometry
is defined by its amplitude and wavenumber. However, for random rough surfaces
would require feature definition in a more general sense. With its pioneering work on the
ocean surfaces, Longuet-Higgins [Longuet-Higgins, 1957] introduced spectral moments.
This work has been followed by Nayak [Nayak, 1971, Nayak, 1973], who delved into
the characterization of rough surfaces as well. While their initial research centered on
isotropic surfaces, their methods are adaptable to non-isotropic surfaces. A series of
spectral moments that derives from the PSD function, are exposed as follows,

mp,q =

∫ ∫
R
Φ(kx, ky)kp

xkq
ydkxdky

For anisotropic rough surfaces, PSD function exhibits different behaviors along the x
and y axes, as evidenced by integrations over ks and ky. In contrast, with isotropic rough
surfaces, the PSD function demonstrates notable consistency across both kx and ky. Insofar
the spectral moments could solely account for the renewed parameter wavenumber k2 =
k2

x + k2
y, as follows,

mn =

∫
R
Φ(k)kndk (1.14)

Thanks to these moments, one could measure the standard deviation of roughness σ,
the standard deviation of its gradient

〈
|∇z|2

〉
, and the standard deviation of its laplacian〈

|∆z|2
〉
.

m0 = σ
2 (1.15a)

m2 =
〈
|∇z|2

〉
(1.15b)

m4 =
〈
|∇

2z|
2
〉

(1.15c)

In addition to these moment, Nayak’s parameter α naturally appearing in Nayak’s descrip-
tion of the roughness, giving insights into the bandwidth of the spectrum, it represents a
combination of spectral moments:

α =
m0m4

m2
2

(1.16)
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m4

Figure 1.13: Illustration of features associated with spectral moments.

All these parameters underscore different characteristics, as illustrated in Fig 1.13.
Nayak’s parameter has a minimum value of 3/2, linked to a height profile made of a
single sine wave. However, in practical scenarios,α typically takes much larger values,
and can theoretically extend to infinity for an infinitely broad spectrum of a self-affine
surface. The asperity density can be quantified through spectral moments. For advanced
analysis, Nayak assumes Gaussian distribution for height profile. Consequently, the
resulting set of variables, ξi, also follows a Gaussian distribution. Adhering to the central
limit theorem, the likelihood of a specific occurrence can be determined through joint
probability.

ξ1 = z, ξ2 =
∂z
∂x
, ξ3 =

∂z
∂y
, ξ4 =

∂2z
∂x2 , ξ5 =

∂2z
∂x∂y

, ξ6 =
∂2z
∂y2 ,

The summits of the surface are defined as follows

ξ2 = 0, ξ3 = 0, ξ4 < 0, ξ6 < 0, ξ4ξ6 − ξ
2
5 ≥ 0

Nayak demonstrated that the density of summits could be defined as

Dsum =
1

2
√

3

(m4

m2

)
(1.17)

The height probability of summits is obviously asymmetric for small values of α, but for
α→∞ this distribution tends to the normal distribution of the roughness.

Spectral content

The analysis of the PSD function reveals other characteristics, especially it decays follow-
ing k−2(H+1), as presented in [Dodds and Robson, 1973, Majumdar and Tien, 1990]. The
rate of this decay is closely linked to the fractal dimension, as was illustrated for Weier-
strass function [Berry et al., 1980]. To impose a physical limit to the surface roughness,
for example, at the atomic scale,one needs to incorporate an upper cutoff wavenum-
ber, ks, above which the mode amplitude is considered zero. Conversely, at lower
wavenumbers (or on a larger scale), the spectrum also diminishes to zero, which en-
tails the definition of a low cutoff wavenumber kl. In some cases, as documented
in [Kluppel and Heinrich, 2000, Persson et al., 2004], the spectrum exhibits a plateau,
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kl kr ks
H ↗

−2(H + 1)

log(k)

lo
g
(Φ

)

Figure 1.14: PSD definition in function of wavenumber parameters (kl, kr, ks), and of the
Hurst parameter.

leading to the identification of a third wavenumber, kr. Fig. 1.14 aims to illustrate the
variation of the PSD helped by these parameters.

Φ(k) =


C if kl < k < kr

C
(

k
kr

)−2(H+1)
if kr ≤ k ≤ ks

0 otherwise

(1.18)

The condition kl ≫ 1 can be also used as a condition of representativity of the rough-
ness [Yastrebov et al., 2012, Pastewka et al., 2013] or the proximity of its height distribu-
tion to a normal one. In many cases, the plateau could be neglected, considering kl = kr.

Generation of random rough surfaces. In a numerical setting, the combination of the
PSD function with the Gaussian nature of the height distribution proves adequate for the
generation of random rough surfaces. One of algorithms for this purpose was introduced
in [Hu and Tonder, 1992], employing the Fourier transform. The process initiates with
the creation of a white noise, which is based on a Gaussian distribution. Subsequently,
the algorithm filters this noise using the PSD function in conjunction with the Fourier
transform. This method is represented below

z(x, y) = F −1 (F (noise).Φ(k)) , noise ↪→N(0, σ), (1.19)

where F denotes the Fourier transform. The Gaussian nature of the random rough
surface could be preserved as long as kl is large enough. Examples of such surfaces are
displayed in Fig. 1.15 generated by Tamaas library [Frérot et al., 2020] for different cut-off
parameters.

1.2.3 Analytical models of rough contact

The Archard’s first attempt, has been followed by other studies. In this framework, the
study of rough contacts in the elastic regime has also benefited from subsequent analytical
development. Rough surfaces are described through their statistical properties. In this
particular section, three models are presented: the Greenwood-Williamson (GW) model,
the Bush-Gibson-Thomas (BGT) model and the Persson model.
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kl = 1, ks = 32 kl = 4, ks = 32 kl = 16, ks = 32

kl = 1, ks = 128 kl = 4, ks = 128 kl = 16, ks = 128

Figure 1.15: Generated random rough surfaces for different cutoffs kl, ks and for a constant
H = 0.8.

Greenwood-Williamson’s model

Greenwood and Williamson [Greenwood and Williamson, 1966] developed a subsequent
model studying the growth of real contact area for rough surfaces represented by asper-
ities. This model, denoted as GW, presumes that all asperities have the same curvature
β and only asperity tips are in contact and undergo elastic deformation following Hertz
contact. A representation of this parametrization can be found in Fig. 1.16.

d

β

0

z

Figure 1.16: Asperities of a rough surface penetrate in the plane set at altitude d.

Using a normal distribution of asperity altitudes z, and recalling the Hertzian solution
Eq. (1.8b), we can formulate the GW model. The penetration parameter is replaced by
z − d, employed the integration of the summit distribution, resulting in the definition of
a function Fn. This enables to define the real contact area A, and the applied load P along
the altitude of the indenter d.
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A = πηA0βσF1(d) (1.20a)

P =
4
3
ηA0β

1/2σ3/2E∗F2/3(d) (1.20b)

Fn(d) =
∫ +∞

d
(z − d)npsum(z)dz, (1.20c)

where η represents the density of summits, A0 is the nominal area, σ is the standard
deviation of the asperity distribution, and E∗ stands for the effective Young’s modulus.
The distribution of summits is summarized by the integral function Fn. For instance
P(z > d) = F0(d) is the probability of encountering a summit higher than the altitude d.

This model successfully establishes a proportional relationship between load and real
contact area for relatively small loads. Actually, this model is constructed for small loads
due to a few assumptions: (1) the curvatures are consistent for all asperities making
contact (Hertzian contact is valid), (2) the deformation remains elastic, and (3) merging
between expanding contact spots from adjacent asperities is neglected, but probably
the most important assumption (4) is the lack of elastic interaction between asperities.
Notwithstanding these limitations, GW model has paved the way for further studies in
multi-asperity models.

Bush-Gibson-Thomas’ model

Bush-Gibson-Thomas [Bush et al., 1975], denoted as BGT, introduced an alternate model
accounting for the asperities’ properties derived from the statistical analysis of roughness.
This aforementioned model is build upon the joint probability of summits, assuming a
Gaussian distribution of heights. BGT model succeeds as well in the establishment of a
proportional relation between real area of a contact, A, and p0 the nominal pressure, as
follows,

A
A0
=

√
π
√

m2

p0

E∗
(1.21)

Where m2 represents the second spectral moment related to the variance the surface
gradient The model indicates that the real contact area is strongly dependent on the m2
characteristics of the roughness. It inherits the same limitations as the GW model, being
applicable to only very small fractions of the real contact area. For further details one can
see [Greenwood, 2006, Carbone and Bottiglione, 2008].

Persson’s model

The model proposed by Persson [Persson, 2001a, Persson, 2001b] (see also
[Manners and Greenwood, 2006]) seeks to characterize the expansion of the real con-
tact area up to a full-contact regime. Within this framework, Persson’s model considers
the contact pressure probability density P(p,V). It operates with the pressure p and its
variance V.

Noticably a sinusoidally varying pressure, represented as p(x) = pm cos (2πx/λ), results
in a profile deformation given by u(x) = pmλ/E∗π cos (2πx/λ). The variance is determined
using the same PSD function as that for profile height, employing the magnification
parameter, ζ, where ζ = ks/kl > 1.

V(ζ) = ⟨|p|2⟩ =
E∗2π

4

klζ∫
kl

k2Φ(k)dk =
E∗2m2

4
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Combining the expressions for P and V, it yields the establishment of a diffusion equation
such as,

∂2P
∂p2 = 2

∂P
∂V

An explicit expression for the pressure distribution P(p,V) can be found if a specific
Dirichlet boundary condition is imposed for this diffusion equation at zero pressure.
Integrating it over the domain of pressure p ≥ 0 prescribed by the SHM condition, this
enables to define the real contact area. This model gives a relation between the real contact
area, and the applied load, as follows,

A
A0
= erf

(
p0

E∗
√

m2

)
(1.22)

With p0 is the mean pressure over A0 the nominal contact area.
This model, based on a cleverly formulated relationship, is applicable for a

full contact regime. However its extension to partial contact is not fully justi-
fied [Manners and Greenwood, 2006]. Under a light load, when p0 → 0, this model
predicts a linear relationship between the fraction of real contact area and the pressure.
This model agrees with the BGT model, although it differs by a factor of π/2 and predicts
a lower contact area.

1.2.4 Plasticity index

As the contact pressure increases, the number of contacting asperities rises as well. How-
ever, the pressure at theses contacting asperities can remain relatively stable and might
even decrease. Indeed, due to the growing number of asperities can distribute and pos-
sibly relieve the pressure for some contact spots. To assess of the amount of asperity
undergoing plastic deformation, the plastic index has been introduced. Greenwood and
Williamson [Greenwood and Williamson, 1966] defined one such index as the ratio of
Young’s modulus to hardness. It also incorporates the surface topography by including
the standard deviation of the height surface profile σ and the mean curvature of summits
β.

ΨG =
E∗

H

√
σ
β

(1.23)

In [Cooper et al., 1969] another version of plastic index is defined. This rather consid-
ers the second spectral moment m2 to account for the roughness property, as follows,

ΨM =
E∗

H
√

m2 (1.24)

Johnson [Johnson, 1987] has proposed in turn another version of plastic index, com-
posed, such as,

ΨJ =
E∗

H

√
σsks (1.25)

Where σs is the standard deviation of summits, and ks represents the root mean square
curvature of summits (different from m2).

All these parameters take into consideration the ratio E∗/H, and they are all influenced
by the roughness. It is clear that an increase in roughness leads to a higher plastic index.
As Ψ grows, the plastic deformation among the contacting asperities also increases.
A general rule of thumb is that for Ψ < 1, deformation predominantly stays within
the elastic regime. However, with Ψ > 1, plastic deformation becomes the more likely
occurrence. For a detailed assessment of plastic deformation, Finite Element Method (FEM)
can be effectively utilized. Specifically, in [Gao et al., 2006], the researchers conducted an
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analysis of the deformation of a height sine profile under an elastic-plastic constitutive
law. This research contributed to the development of an equivalent plastic index, defined
by the amplitude and wavelength of the height profile. Additional insights might be
found in [Gao and Bower, 2006], which delves into deformation introducing height profile
following Weierstrass function, as well as from investigations on random rough surfaces,
as outlined in [Pei et al., 2005]. It demonstrates that asperities tend to experience more
substantial plastic deformation as they decrease in size.

1.2.5 Numerical methods

There are various methodologies available for addressing problems related to rough
surfaces. One of the most prevalent is the FEM, recognized for its robustness and
versatility. It seems to be well-adapted at tackling both elastic [Hyun et al., 2004]
and elastic-plastic scenarios [Pei et al., 2005, Gao et al., 2006, Yastrebov et al., 2011]. An-
other approach to address this problem might be using Molecular Dynamic Method,
dealing with plastic deformation as proposed [Akarapu et al., 2011] as well as adhe-
sion [Pastewka and Robbins, 2014]. Additionally, an alternative procedure was proposed
by Polonsky and Keer [Polonsky and Keer, 1999]. Their approach benefits from the West-
ergaard’s solution [Westergaard, 1939, Johnson, 1987], as presented below,

p(x) = cos
(
2π

nx
L

)
↔ u(x) =

2
E∗n

cos
(
2π

nx
L

)
(1.26)

The Westergaard solution is especially adapted to the study of random rough periodic
surfaces decomposed in sine functions. This assumes elastic regime deformation, and
allows the application of the theorem of superposition. Fig. 1.17 aims to illustrate the
composure of pressure field and the resulting deformation.

+

p1

⇒
p2 u

Figure 1.17: Elastic deformation induced by a bi-sinusoidal pressure field

The procedure then includes a condition on gap, and the pressure. They both need to
be positive in respect of the HSM condition. A monotonic loading is applied by increment,
ensuring the HSM condition is respected. As the initial solution involves sine function, it
appeals the use of Fast Fourier Transform (FFT). The deformation-pressure relation can be
computed using the following relation, where F stands for Fourier transform.

p(x) = F −1 (k.F (u(x))) (1.27)

Where k = {2/(E∗n)} for n ∈ [1,N], and N = L/∆x.
We will refer to this method as FFT-BEM, named after FFT that speeds up the compu-

tation of the convolution. This was extensively used for rough surfaces problem in elastic
deformation, as reported in the literature [Yastrebov et al., 2015b, Yastrebov et al., 2017b],
see Fig. 1.18. This method now benefits from further developments. Tamaas li-
brary [Frérot et al., 2020] can be used to solve not only classical contact but also adhe-
sive problem [Rey et al., 2017] and even elastic-plastic problems [Frérot et al., 2019]. This
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kl = 8, ks = 32, H = 0.25
ω = −0.01, A = 0.007

ω = −0.02, A = 0.098

Figure 1.18: Rough surface and contact areas for different applied pressure computed
using FFT-BEM [Frérot et al., 2020].

method can be also coupled with FEM, in the aims of multi-scale study, as proposed
by [Carvalho et al., 2022]. FFT-BEM enables to solve the problem solely accounting for
the surface height, without volume discretization. The rough surface is periodic and
defined over a regular grid, prescribed by the use of FFT.

1.3 Conductive resistance

The investigation of the rough surfaces in contact now brings us to the study of conduc-
tivity at the aforementioned contact interface. It has been pointed out the height profile
is not relevant for the lone problem of conductivity. Indeed considering snapshots of real
conductive area, the study of constriction resistance is clear. Nevertheless, the contam-
inant oxide or fluid presence might alter the equivalence between contact stiffness and
resistance demonstrated by Barber [Barber, 2003]. This section delves into the constriction
resistance problem, studying the influence of conductive spot morphology. The problem
of conductivity will be extended, addressing oxidation and coating concerns, and ending
by the presentation of coupled problems.

1.3.1 Constriction resistance

Influence of shape

As lately exposed, the constriction resistance roots from the shrinkage of the current
lines. The morphology of the real conductive area, and of the separate spot are linked
to the constriction resistance. The aforementioned real contact area exhibit various spot
shapes, related to the roughness, the mechanical properties, and the loading regime.
At lower loads, contact spots are typically well-separated and often take on elliptical
shapes, for which solutions are well-established, as noted in [Holm, 1967]. In the case of
these elliptical contact spots, the constriction resistance is quantified in relation to their
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eccentricity and mean radius. It is observed that the constriction resistance decreases with
this eccentricity when the area is kept constant. Aichi and Tahara [Aichi, 1994] performed
experiments on the conductive resistance of a rectangle, maintaining a constant area. Their
findings confirmed that the resistance decreases as the length-to-width ratio increases.
In [Slade, 2017], values for constriction resistance for various contact spot shapes are
listed, including square, circle, rectangle, and ring, all with equivalent areas.

Boyer’s model. Investigating the influence of shape, Boyer [Boyer, 2001a] introduced a
model in which the constriction resistance can be summarized by a shape factor, denoted
as S, along with a length scale, l, as follows,

R =
Sρ
4l
,

where ρ is resistivity. This provides an expression for the self-resistance. But the inter-
action between the contact spot is expressed as they were concentrated source points of
potential, separated by a distance d between their centers:

R =
ρ

2πd

Figure 1.19: Square and triangle for Boyer’s decomposition

Fig 1.19 illustrates applications of Boyer’s model. In this model, the constriction resis-
tance incorporates the shape factor S, and a hierarchical division is applied to introduce
varying length-scales, initially l and then l/2. In cases involving square contact spots, an
equal fraction of flux is present in each contact spot, accounting for a quarter of the total
flux from the original contact. In contrast, with triangular contact spots, the distribution
of flux among the sub-contact spots is uneven.

Ssquare =
4 +
√

2
2π

≈ 0.86

This result for the square spot is backed by the value computed with BEM by Naka-
mura [Nakamura, 1995], showing a deviation of less than 1%.

Fabrikant’s model. Fabrikant [Fabrikant, 1986] provides an another model for the con-
striction resistance. This approach enables the calculation of shape factors for various
contact spot geometries. The normal flux is assumed to exhibit the same singularity as
observed in elliptical contact spots, which simplifies integration over the contact spot
area. Its formula is detailed in Eq. (1.28), involving the contour radius, a(θ), where θ rep-
resents the angular position, and j0 is the normal flux at the center of the contact spot.
The distribution of the normal flux field is depicted in Fig. 1.20 for a square contact spot,
as well as for a contact spot defined randomly.
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jn(r, θ) =
j0√

1 − (r/a(θ))2
(1.28)

Insofar, one could compute the potential held on the spot, Φ0, by integration of the
normal flux field over the contact area, and weighted by the Green function, ρ/2πr.

Φ0 = ρ

∫ 2π

0

∫ a(θ)

0

jn(r, θ)r
2πr

drdθ (1.29)

Using these equation, shape factors for various shapes can be computed. Insofar for the
squared contact spot, with size length equal of l, the radius is defined as a(θ) = l/ cos (θ)
This leads to the following shape factor,

Ssquare =
2

ln(1 +
√

2)
≈ 0.88

This result deviates by only 1.2% from the latter Nakamura’s result.

l
cos(θ)

π/4

0

a(θ)

Figure 1.20: Diagram of normal flux within the contact spot under Frabikant’s assumption

Multi-spot resistance

Addressing the problem of constriction resistance in real contact areas, and drawing
upon Dyson’s observations [Dyson and Hirst, 1954], Greenwood [Greenwood, 1966] de-
veloped a model tailored for constriction resistance in a multi-spot surface. Greenwood’s
focus was on the real contact area, specifically examining the constriction resistance gen-
erated by a set of circular spots with radius ai separated by distances di j between the
spots indexed by i and j. An example of this model can be found Fig. 1.21, adapted
from [Greenwood, 1966].

Greenwood expresses the constriction resistance in terms of heat production. This
approach tends to overestimate the constriction resistance for this particular problem.
The constriction resistance could be simplified assuming equal contact spots of radius ā
as

R =
ρ

4nā
+
ρ

2πn2

∑
i, j

1
di j

(1.30)

This equation can be compared with the one proposed by Holm [Holm, 1967]. In this
context, the interaction between spots goes streamlined by the definition of a length
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Figure 1.21: Example of real contact area for constriction resistance computation adapted
from [Greenwood, 1966]

parameter, α, which depicts the radius of the cluster encompassing the contact spots.

R =
1

4nā
+

1
4α

(1.31)

The Holm’s model is parallel with the Greenwood’s resistance formula. The Holm’s radius
α can be defined as follows,

α =
πn2

2

∑
i, j

1
si j


−1

Fig. 1.21 illustrates, that for the particular depicted case the Holm’s radius could be
larger than the true radius of the cluster. Holm’s model does not consider the size or the
distribution of the spots within a cluster. This observation aligns with the findings of Mi-
nowa and Nakamura [Nakamura and Minowa, 1986], who conducted FEM simulations
on different distributions. Their results indicated that the outcomes are not significantly
influenced by the arrangement of these points, unless they are concentrated around the
periphery of the nominal contact zone.

Greenwood and Tripp’s research [Greenwood and Tripp, 1967] suggests that contact
spots are clustered for a parabolic body-shape profile around the middle point, but
spread out of the contact radius given by the Hertzian contact. As the load increases, this
clustering effect intensifies, making the contact spot distribution more consistent with the
Hertzian pressure distribution.

Validation with experiments

In Holm’s model Eq. (1.31), the term 1/4nā decreases as the number of spots increases.
For a high number of contact spots, the term involving the Holm’s radius, α, become
predominant. The real area of contact might be defined as A = πηα2, where η represents
the density of contact spots. In the plastic deformation regime, using Eq. (1.13), the
constriction resistance relates to the load applied, as expressed below,

R =
ρ

4

(
πηH

F

)1/2

(1.32)
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The constriction resistance diminishes as the load applied increases, exhibiting an
inverse square root relationship. This behavior has been corroborated by several experi-
mental studies, which have observed this trend across various combinations of mechan-
ical loads and materials. With the onset of plastic deformation, the contacting asperities
become flattened, leading to a non-reversible change in constriction resistance. During
unloading, the constriction resistance is lower compared to the loading phase, attributable
to these flattened asperities. Besides plasticity, adhesion may also influence conductivity,
with certain parts remaining conductive even under tensile loads.

In Cooper’s pioneering work [Cooper et al., 1969], thermal resistance is examined,
taking into account different asperity properties and load regimes. This study introduces
the concept of thermal interfacial contact conductance, hc, which is derived from a tem-
perature drop, ∆T, across the interface, as defined by R = 1/hcA = Q/∆T. The authors
consider the effect of roughness, building upon an asperity-based model. Their model es-
tablishes a relationship that includes a plasticity index, where σ represents the standard
deviation of the asperity distribution, and | tan (θ)| indicates the average curvature slope.
The parameter hc is then articulated in terms of the mean pressure, pm, and the hardness.

hc

k
σ

| tanθ|
= 1.45

(pm

H

)0.985
(1.33)

The exponent for the ration pm/H results from the extrapolation of the results, but it
appears to be at variance with Eq. (1.32).

1.3.2 Real conductance effect

Effect of the thermal convection with gas

The thermal conductance between rough surfaces also needs to consider the heat ex-
change due to convection. However, its influence is relatively minor, as highlighted by
Lang [Lang, 1962]. This study leads to the identification of a characteristic length scale
of the cavity, which pertains to the study of the height profile. In reality, gas is dispersed
among the cavities formed between rough surfaces. The fluid within these cavities con-
tributes to convection exchange, necessitating the definition of a convective heat transfer
coefficient, hg. The characteristic length scale of these cavities is thought to be the average
thickness, δ, combined with the thermal conductivity of the gas, kg.

hg =
kg

δ
(1.34)

The thickness, δ, is anticipated to be comparable in magnitude to the height of the
surface roughness. This model is based on a static interpretation of the gas, differing from
the dynamics characteristic of natural convection. In considering the heat convection
exchange, the temperature difference between the gas and the surface temperature is taken
into account. Following the heat exchange laws at the macro-scale, this would involve
the mean surface temperature, Ts and the initial temperature of the gas, Tg. However,
the actual temperature of the fluid within, T f , might vary from these temperatures It
yields the definition of accommodation coefficient, denoted by β, which serves to adjust the
temperature values:

β =
T f − Tg

Ts − Tg
(1.35)

The definition of the accommodation coefficient is experimentally studied discussing
upon the influence of roughness [Semyonov et al., 1984, Song and Yovanovich, 1987,
Bahrami et al., 2004]. It is found to be sensitive to the pressure gas, significantly in-
creasing for high pressure. Otherwise the conductive resistance would be still dominant.
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Influence of oxidation

Oxidation is an ubiquitous problem in all applications involving metals. One of its effects
is the reduction of the conductivity of the contacting surfaces. In practical scenarios,
oxide crystals typically begin to nucleate at certain points and then expand, following
the crystalline orientation of the metallic grains. This growth phenomenon is extensively
detailed in the literature, as seen in [Thomas and Roberts, 1961, Doherty and Davis, 1963,
Hart and Maurin, 1970]. Such occurrences are observable, as demonstrated in Fig. 1.22.
Typically, oxide stains are likely defined by polygonal shapes. The crystal orientation and
the shapes can be correlated through the use of interferometry techniques. As a result,
the real conductive surface area is reduced in comparison with the real contact area. The
constriction resistance increases while the contact stiffness remains practically unchanged
between oxidized and clean surfaces.

Figure 1.22: Result of direct observation for aluminum oxide on aluminum surface
adapted from [Thomas and Roberts, 1961]

Oxidation is inherently linked to environmental conditions, with various classifica-
tions. First and foremost, humidity level plays a significant role in corrosion, which
yields galvanic corrosion being at variance with dry corrosion. Temperature is another
crucial factor that accelerates oxidation. Moreover, corrosion can be compounded by
heating and thus being potentially linked to the Joule effect, a phenomenon explored
by Urakawa [Urakawa et al., 2013]. The oxidation process results in the formation of a
weakly conducting surface film.

Typically, such films exhibit the characteristics of brittle materials. Electrical contact
is formed by metal flow through narrow cracks of oxide layers. The oxidized contactor
can transmit flow following the fracture of the oxide layers, experiencing a load as noted
by [Timsit, 1980] in the case of aluminum contactors. The constriction resistance is affected
by the configurations of cracks and the modes of fracture, as additionally evidenced
by [Osias and Tripp, 1966].

1.3.3 Material coating

In the purpose to reduce the corrosion, connectors are sometimes coated with noble ma-
terials like gold, silver, nickel, or tin. In addition, these coatings may have convenient
effects on the mechanical properties at the interface, reducing both roughness and hard-
ness. The current lines could be deviated by the coating conductive properties different
from the bulk coated material, as illustrated in Fig. 1.23. In this figure, the two parameters
of conductivity are defined as kl, ks denote the conductivity for the layer material and the
substrate, respectively. Ultimately when kl ≫ ks, the conductive material may be reduced
to the coating with thickness L. The current path is then constrained by the thin layer,
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instead of letting the current spread toward the half-space. The curvature of the current
travel introduces an additional resistance, known as spreading resistance, akin to the con-
striction seen at the contact spot. The development of micro-cables and printed circuits
has spurred research into the latter subject. Zhang explored this topic in a series of stud-
ies [Zhang et al., 2011, Zhang et al., 2012], conducted by numerical simulations. These
studies indicate that the resulting constriction resistance tends towards a limiting value
of 0.28 as the coating thickness tends to zero.

z

kl < ks

z

kl > ks

Figure 1.23: Illustration of current flow for layered material, for different conductivity
couple

Plating factor. In a less extreme scenario, the resulting constriction resistance is influ-
enced by kl, ks, and L. Its evaluation still requires numerical computation. However, it
is noteworthy when the thickness L is comparable to the radius of the contact spot, as
shown on the right-hand side of Fig. 1.23, the current travels along straight vertical line.
The constriction resistance within the substrate can be roughly estimated by Eq. (1.12),
but the coating results in a conductive resistance of a cylinder with radius a and height L,
as given below

Rt =
1

4ksa

(
1 +

4
π

kl

ks

L
a

)
(1.36)

Conversely, if the plating is thicker, it causes the current flow to curve,similarly to the
one depicted on the left-hand side of Fig. 1.23 for kl < ks. Under these circumstances, the
constriction resistance deviates from the previously mentioned expression and is more
accurately represented by 1/4kla, while disregarding the substrate. This relationship has
been supported by the work of Nakamura and Minowa [Nakamura and Minowa, 1989],
reinforced by computational results. In this context, comparing the constriction resistance
with and without plating leads to the formulation of the plating factor, denoted as P f :

P f (L/a, kl, ks) =
(

1
4ke f f a

)
/
( 1
4ksa

)
(1.37)

where ke f f represents the effective conductivity of the plated material. Some results are
reported in Fig. 1.24 for copper coupled with various coating material. The plating factor
rises with the plating thickness, being always greater than 1, because the coating material
is less conductive than the copper.

Despite the rise of the contact resistance, the overall behavior should benefit from
the plating by the reduction of the contaminant film. Eventually, using softer materials
yield to more plastic regime deformation, and result in a larger real contact area and thus
small resistance. Evidence on the deformation mode and insights on contaminants can
be found in [Pinnel and Bradford, 1980, Antler et al., 1975, Slade, 2017].
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Figure 1.24: Influence of the plating factor for kl < ks, figure adapted
from [Williamson and Greenwood, 1989].

(a) (b)

Figure 1.25: (a) Diagram of hole in plating surrounded by halo in pore corrosion, (b)
observation of copper sulfide blossom, adapted from [Sun et al., 2007].

Pore corrosion. The efficiency of the plating depends on its thickness. Electronic connec-
tors are commonly coated with gold, but the coating is eventually porous. This means the
plating get holed, and corrosion could lies through those. This specific type of corrosion
is known as pore corrosion.

Corrosion of the substrate results in the formation of cavities beneath the plating. This
can lead to the emergence of oxide layers on top of the plating. Sun [Sun et al., 2007]
explored this phenomenon for copper coated with gold. As a result, even with coating,
the contact resistance may be adversely affected by oxidation and decline over time. In
the meantime, the size of the oxide blossom increases with the size of the pore.

1.3.4 Joule heating and coupling effect

The electrical contact problem might exhibit coupling thermal effect. Initially, the electrical
issue relates to the thermal problem via the Joule effect: the flow of current heats the
material due to its conductive properties. Therefore a rise in temperature results in
a reduction of thermal conductivity, k, and an increase in electrical resistivity, ρ, by a
proportional law in temperature, as follow,

k = k0(1 − βT) (1.38a)

ρ = ρ0(1 + αT) (1.38b)

Where β and α denote thermal conductivity and electrical resistivity constants, respec-
tively. This relationship can be connected to the Weidemann-Franz law, given by kρ = TL,
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where L is the Lorenz constant, valued at L = 2.44.10−8V2.T−2, illustrating the direct
relation between an increase in ρ and a decrease in k. This law has shown its experi-
mental consistency [Timsit, 1983] but inherently restricted by the melting point of metals.
Interestingly, it evaluates a potential drop of merely one-tenth of a volt at the melting
point.

This highlight the shortcomings of the ohmic resistance model. When the mean free
path, denoted as l f p is greater than the typical radius of the contact spots or the gap
between contacting surfaces, electrons are capable of traversing these distances. Such
behavior contributes an additional nano-scale resistance, referred to as Sharvin resistance.
This concept diverges from the classical Ohmic resistance model and aligns more closely
with a ballistic model, as detailed by Wexler [Wexler, 1966].

R =
ρ

4a
Γ
(
l f p/a

)
+

C
a2 (1.39)

With C ∼ 10−8Ω.m−2 is the Sharvin resistance coefficient, and Γ is a function decreasing
from 1 to 0.694. The ratio l f p/a is known as the Kunder’s coefficient. The value of C
must be defined for each couple of metals, as reported in [Slade, 2017]. The model of
constriction resistance is in good agreement in the extent that the mean free path is of
magnitude of nm, for mean contact spot of 0.1µm.
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Résumé du Chapitre II Cette partie vise à introduire les méthodes
numériques utilisées pour la modélisation de la conduction aux interfaces de con-
tact. Afin de tirer partie des hypothèses du problème physique, et définir de
façon fiable et consistente les surfaces de contact, nous avons choisi de développer
un modèle par Élélement de Frontière. Cette partie sera ainsi organisée en trois
sous-parties, détaillant les outils numériques développés pour cette méthode. La
première sous-partie est dédiée à l’établissement de l’équation intégrale, permet-
tant la formulation des Éléments de Frontière. Celle-ci tire partie des propriétés
physiques du problème, de l’existence d’une solution particulière, et se réduit à
la modélisation de la surface de contact. Une seconde sous-partie introduit les
outils numériques, conduisant à l’établissement d’un système linéaire à résoudre.
La mise en place de la Méthode par Elements de Frontière fait appel aux outils
classique de maillage et d’interpolation, communs à d’autre méthode, tout en en-
gageant des méthodes spécifiques pour l’intégration numérique. Cette sous-partie
est conclue par une première étude de la tache circulaire de contact, s’agissant
d’un classique problème de résistance de constriction. Enfin la dernière sous-
partie détaille le développement d’une version rapide des Élément de Frontière,
visant à réduire la complexité initiale en stockage et mémoire de O(N2), à un or-
dre de O(N log (N)) Cette implementation fait intervenir la définition de matrice
hiérarchique (H-matrice), et l’utilication d’approximation faible-rang.

Abstract for Chapter II This chapter aims to describe numerical
methods used for solving conduction problem at contact interfaces. To take advan-
tage of the assumptions of the physical problem, and to define the contact surfaces
in a reliable and consistent manner, we have chosen to develop a model using the
Boundary Element method. This chapter is thus organized into three sections, de-
tailing the numerical tools developed for this method. The first section is dedicated
to the establishment of the integral equation, which forms the basis for the Bound-
ary Element Method (BEM). This section takes advantage of the physical properties
of the problem, particularly the existence of an elementary solution, which reduces
the modeling to the contact surface. A second section will introduce numerical
tools, leading to the establishment of the linear system to be solved. The imple-
mentation of the Boundary Element Method involves the use of common tools such
as meshing and interpolation function, and employs specific methods for numer-
ical integration. A first study of a circular contact spot, as a primary problem of
constriction resistance, will be carried out. Finally, the last section give insights
into the development of the fast version of the Boundary Elements, aiming to re-
duce the initial storage and memory complexity from O(N2) to O(N log (N)). This
implementation involves the definition of hierarchical matrix (H-matrix), and the
use of low-rank approximation such as ACA and SVD. All details of the Fast-BEM
implementation are presented and illustrated on numerous examples.
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Introduction & motivations

The constriction resistance is typically characterized by the conduction between two half-
spaces in contact. One way to solve this problem could be using Finite Element Method.
However, this requires modeling the body sufficiently large and possibly extrapolating
the results in the scope of half-space geometry. Eventually one could get rid of the
extrapolation by using the Infinite Elements, as suggested by [Bettess, 1977], but it still
requires a volumetric mesh, which does not ensure the geometric consistency near the
edges of the contact area.

On the other hand, the Boundary Element Method seems more suitable for this issue.
It has been previously employed for circular contact spots [Nakamura, 1993], proving its
effectiveness in addressing this type of problem. This allows to reduce the problem’s
geometry to the real contact area. Only a planar mesh is needed, which streamlines the
evaluation of the flux transmitted through the real contact area.

This section is dedicated to presenting the integral equation foundational to the BEM
formulation, followed by the Fast-BEM. The implementation was widely inspired by the
BEM handbook by Bonnet [Bonnet, 1999] (in french), following its development for the
integral equation formulation, and then the application of numerical tools. Concerning
the Fast-BEM implementation, the book on H-matrix by Bebendorf [Bebendorf, 2008],
provides subsequent insights in the construction and the use of these matrices. The
following development has an objective to be both as comprehensible and complete as
possible.

2.1 Integral formulation for conduction

2.1.1 Problem of conductivity

In this part, the problem of conduction in a half-space will be developed intending to
formulate its corresponding integral equation. The problem of conduction is identical
for the thermal or electric problems, both in static regime. The geometry is generally
considered as a body Ω, such as a three-dimensional solid, bounded by a surface ∂Ω.
This body is assumed to be constituted by an isotropic and homogeneous material. The
conductivity property is fully characterized by a scalar constant K.

The problem in Ω is resolved in terms of a scalar potential function, denoted by U.
It enables to equivalently study the electric and the thermal problems. The flux derives
from the potential, denoted by j, as follows

j = −K∇U, in Ω (2.1)

Where the symbol ∇. stands for the gradient. This equation is supplemented by the
equilibrium equation in Ω. This is given by the following equation (2.2), considering the
problem of conduction in its static regime, with no heat source.

div( j) = 0, in Ω (2.2)

Such as the problem of conduction is assumed in its static regime, and with no heat source.
Substituting the flux in Eq. (2.2), by its relation with the potential in Eq. (2.1), results

in the establishment of the Laplace’s equation. This involves solely the potential U in a
linear relation, and the conductivity K disappears, assuming this does not vary in space,
nor depends on temperature.

∆U = 0, in Ω (2.3)

To complete the problem formulation, one needs to prescribe boundary conditions:
Dirichlet’s and Neumann’s conditions, in terms of potential and normal flux, respectively.
Those are respectively defined in the following equations Eq. (2.4), Eq. (2.5).
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Dirichlet : u(y) = uD(y) for y ∈ ∂Ωu (2.4)

Neumann : jn(y) ≡ j(y) · n(y) = jN(y) for y ∈ ∂Ω j (2.5)

Where n is the outward normal.
In a general sense, a problem is deemed to be well-posed when a single condition is

set at every point on the boundary. It is possible to combine two types of condition, but
they must be applied within separate regions, as highlighted by the following conditions:

∂Ωu ∪ ∂Ω j = ∂Ω, ∂Ωu ∩ ∂Ω j = {∅}

2.1.2 Identity of reciprocity

The integral formulation of this problem relies on the theorem of reciprocity, for a linear
problem. This section aims to introduce this type of formulation, taking on the Boundary
Element Method as presented in [Bonnet, 1999]. The theorem of reciprocity parallels
to the Maxwell-Betti theorem straightforwardly formulated in the case of a linear elastic
problem. This assumes the problem linear, involving an isotropic and homogeneous
material. The aforementioned problem of conduction respects this framework. This
theorem is formulated for the Poisson’s equation, as presented below in terms of potential
u1, and a heat source b1, in Ω:

∆u1 + b1 = 0

The flux j1 stems from to the potential, u1, employing a constitutive behavior relation like
Fourier’s law Eq. (2.1), with a constant conductivity K.

In parallel, the second potential, denoted by u2, is established within a domain E.
This potential adheres to the same Poisson’s equation, and its corresponding flux j2 is
likewise derived from u2 by a Fourier’s law. The theorem of reciprocity emerges from a
scalar product between the first equilibrium equation and the second potential u2 in the
domain E as presented in Eq. (2.6a). Similarly, a scalar product is defined between the
first potential u1 and the second equilibrium b2 in Eq. (2.6b). These relations involves the
Poisson’s equation for u1 and u2, respectively. As a result, due to the zero value of Poisson’s
equation, the product terms are identically zero, as are their integrals over the domainΩ∫

Ω

(∆u1 + b1)u2dV = 0 (2.6a)∫
Ω

(∆u2 + b2)u1dV = 0 (2.6b)

The terms∆u1u2, and∆u2u1, can be alternatively reformulated using divergence’s property
and product-derivation formula.

∆u1u2 = div(∇u1u2) − ∇u1
· ∇u2

∆u2u1 = div(∇u2u1) − ∇u2
· ∇u1

Substituting the terms ∇u1u2, and ∇u2u1, in the last integrals Eq. (2.6a), (2.6b), leads
us to new expressions for those integrals:∫

Ω

div(∇u1.u2)dV −
∫
Ω

∇u1.∇u2dV +
∫
Ω

b1u2dV = 0 (2.7a)∫
Ω

div(∇u2.u1)dV −
∫
Ω

∇u2.∇u1dV +
∫
Ω

b2u1dV = 0 (2.7b)
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Combining Eq. (2.7a) with Eq. (2.7b), allows us to get rid of the integral which involves
∇u1
·∇u2 term. Subsequently, the two terms that employ divergence are reformulated into

integral over the surface ∂Ω, by the application of the divergence theorem. This results
in the establishment of the following equation, which is consistent with the application
of the theorem of reciprocity.∫

∂Ω
(∇u1u2

− u1
∇u2) · ndS =

∫
Ω

(b2u1
− b1u2)dV (2.8)

The vector n stands for the normal vector at the surface element dS. The terms∇u1 and
∇u2 are both vectors, and both rely on the flux j1, j2, respectively, by the same conductivity
K. The terms ∇u1

· n and ∇u2
· n are related to the normal flux. The left-hand side of the

equation resumes the boundary conditions, while the right-hand side stems from the heat
term inΩ. For the linear elastic problem, the Maxwell-Betti theorem is based on the linear
elasticity. Integrating this product over a closed domain yields a relationship between the
energies of elastic deformation. It establishes the principle that the work done by one load
distribution on the displacement field caused by a second, unrelated load distribution, is
equal to the work done by the second on the displacement field caused by the first.

2.1.3 Elementary solution

Once the theorem of reciprocity is formulated for the conduction problem, the potential
field u1 is replaced with the potential U, reverting to the physical notation aforementioned
in Section 2.1.1. The second potential field u2 is associated with an elementary solution.
Helped by the linearity of the problem, an elementary solution may serve a general
purpose, with any complex solution being assembled through the principle of superposition.
This solution is defined on an infinite set E, which encompasses the body Ω, and belong
to R3, as formulated below :

Ω ⊂ E ⊂ R3

These subsets allow to consider a point of observation x ∈ E, potentially out Ω, and a
source point y ∈ Ω. This yields the definition of the elementary solution, denoted by the
scalar function G in E, as given by the equation,

∆G(x, y) + δ(x − y) = 0 (2.9)

Where the function G arises from a Poisson problem with a punctual heat source. The
symbol δ stands for the Dirac’s function.

Using this formulation, the heat source is equal to zero everywhere except at the source
point location, when x = y. This elementary solution presented in Eq. (2.9), is known as
the Green’s function. This function involves the distance r between the observation point
x and y, r = ∥x − y∥2 . The symbol ∥ · ∥2 stands for the Euclidean norm. Its expression for
the stationary conductive problem is given by:

G(x, y) =
1

4πr
(2.10)

In Eq. (2.8), the normal derivative is also needed. This yields the definition of the
scalar function H, which derives from the gradient field of G, as presented :

H(x, y) ≡ ∇G(x, y)n(x) = G, j(x, y)n j(x) (2.11)

The scalar function H is expressed by the following expressions,

H(x, y) = −
1

4πr2 r,n (2.12a)
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r,n = r,i · ni =
yi − xi

r
ni (2.12b)

Where the scalar function r,n stems from the scalar product between the normal vector n
along the boundary, and the derivative of r. The coordinates xi, yi, and ni stands for the
components of the x, y and n, respectively.

The Green function is continuous, and continuously derivable onR∗ following its vari-
able r. Nevertheless, it is singular at the source point x = y, when r = 0. This singularity
inherits of the punctual definition of heat source by the Dirac’s source. Integrating the
elementary problem Eq. (2.9) in Ω, and using the divergence theorem, pertains to the
following development ∫

Ω

∆G(x, y)dVY +

∫
Ω

δ(x, y)dVY = 0

⇐⇒

∫
∂Ω
∇G(x, y) · n(y)dSY + k = 0

∫
∂Ω

H(x, y)dSY + k = 0 (2.13)

The expression of k stems from the properties of the Dirac function. It depends on the
position of x. Practically, this factor, k, is assigned to the value 0 if x lies outside the body
Ω, such as x ∈ Ω̄ . The setΩ′ stands for the bodyΩ deprived of its boundary ∂Ω, such as
Ω′ = Ω \ ∂Ω. Insofar, k is set equal to 1 if the source point falls within the body Ω′. The
case scenario when x ∈ ∂Ω needs to be thoroughly developed, as thereafter proposed.

k =
{

1, for x ∈ Ω′

0, for x < Ω (2.14)

2.1.4 Solution for two dimensional problem

For the problem within a two-dimensional space, the Green function takes a different
expression:

G(x, y) =
1

4π
log(r), H(x, y) =

1
4πr

r,n

This function is still continuous, but also diverges when r→ 0. However this function
is integrable along a closed line ∂Ω, for a point of observation part of the boundary,
x ∈ ∂Ω. The interaction of the log function yields an expression similar to r log (r) − r,
which has a finite value when r → 0. This result gives a first insight into the existence
of the factor k, when x ∈ ∂Ω, but needs to be thoroughly expanded in the case of a three
dimensional space.

Boundary Integral representation for the potential

Recalling Eq. (2.8), this latter equation by substituting all physical fields with specific field
variables. First the set of variable indexed by 1, (u1, |1, b1), is replaced by the potential
U, its flux j, and we assume the relating heat source b = 0. The second field (u2, |2, b2)
assigns to the Green function, using G for the potential, its derivative, H, for the flux, and
considering δ for the heat source. This formulation takes advantage of the properties of
Dirac function.

∫
∂Ω

 jn(y)
K
=qn

G(x, y) −U(y)H(x, y)

 dSy =

∫
Ω

(
δ(y − x)U(y) −��b(x)

=0
G(x, y)

)
dVy (2.15)
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Where qn = −∇U ·n, is replaced by jn/K which represents the normal flux with an inward
orientation to Ω. The term incorporating δ reduces to∫

Ω

δ(y − x)U(y)dVy = k U(x) (2.16)

This enables to extract the potential value at any point x. The Green function summarizes
the effect of the sources in Ω at the observation point x. Finally we get the following
integral function involving only the integral over the boundary surface ∂Ω.∫

∂Ω

(
jn(y)

K
G(x, y) −U(y)H(x, y)

)
dSy = kU(x) (2.17)

2.1.5 Limits for Boundary Integral Equation

In Section 2.1, a first integral equation has been set for the problem of conduction we aim
to study. However, this can not be readily applied for our case. Indeed, the divergence
theorem and its application require a closed outer surface. In our case, the outer surface
is not closed, as the considered body is a half-space. Furthermore, k is defined only for
an observation point located inside or outside Ω. Its value at the boundary needs to be
thoroughly computed, as presented in this section.

Reformulation with potential continuity

Before starting the limit development, we need to define the integral equation in a more
convenient way, allowing us to study the continuity condition at the boundary for the
potential field. In fact the definition of the identification function k is non continuous, but
it relates to an integral formulation in term of H.

Using Eq. (2.13) multiplied by the potential U(x), we get the following expressions:

k(x)U(x) = −
(∫
∂Ω

H(x, y)dSy

)
U(x)

⇐⇒ k(x)U(x) = −
∫
∂Ω

H(x, y)U(x)dSy

Integrating this expression in the latter integral formulation Eq. (2.17), we get a new
integral equation not containing the function k.∫

∂Ω

(
jn(y)

K
G(x, y) −

(
U(y) −U(x)

)
H(x, y)

)
dSY = 0 (2.18)

Definition of an inclusion

As was said earlier, the integral equation is only valid for the observation point inside or
outside the finite body Ω. The last integral equation Eq. (2.18) makes the same assump-
tions. To safely extend this integral formulation at the boundary an inclusion Vϵ is added
at the boundary, embedded in the body Ω, as presented in Fig. 2.1, with Vϵ ⊂ Ω. The
observation point x is considered to be part of the inclusion x ∈ Vϵ,

A new body can be defined as Ωϵ(x) = Ω \ Vϵ(x), i.e. the body Ω deprived of the
inclusion. The inclusion is spherical, with a radius of order ϵ. The limit situation where
ϵ→ 0 accounts for x ∈ ∂Ω.

The boundary can be readily reformulated accounting on this inclusion as ∂Ωϵ =
(∂Ω \ eϵ) ∪ Sϵ.

The integral equation(2.18) can be reformulated accounting for ∂Ωϵ
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Figure 2.1: Definition of the inclusion on the boundary ∂Ω

∫
∂Ωϵ

(
jn(y)

K
G(x, y) − (U(y) −U(x))H(x, y)

)
dSy = 0 (2.19)

Condition of continuity

The last equation(2.19) seems to be more adapted to the problem of integration at the
boundary dealing with a difference of potential. This formulation relies on the continuity
of U and the definition of jn. The potential can be reasonably assumed continuous in Ω,
like U ∈ C2(Ω) This property is physically consistent with the continuum equation of U
in Ω in term of laplacian, involving its second derivative. The potential U satisfies the
α-Hölder condition as expressed below.

Definition: α-Hölder continuity

Being f a real of scalar function on d-dimensional Euclidean space satisfies a α-Hölder
continuous, where there are two real constants C ≥ 0 and α > 0, such that:

| f (y) − f (x)| ≤ C∥x − y∥α = Crα (2.20)

This condition is resumed for the potential function U, valid forΩ as a 3-dimensional
Euclidean space. A similar condition of continuity derives for the gradient of U, at
observation point x, where q = −∇U,

∃α > 0,∃D ≥ 0, ∥q(x)∥ ≤ Drα−1 (2.21)

The integrand term in equation(2.19) can be bounded, combining with the expression
of G and H, Eq. (2.10) and Eq. (2.11), respectively. The terms involved are bounded by a
function rα−2.

∃α > 0,∃C′ ≥ 0, |
(
u(y) − u(y)

)
H(x, y)| ≤ C′rα−2 (2.22a)

∃α > 0,∃D′ ≥ 0, |q(y)G(x, y)| ≤ D′rα−2 (2.22b)

Those conditions enable us to bound at once the terms in the integral Eq. (2.19).

Expression for the limits on the boundary

From the position of the point x, for the integration of the inclusion boundary Sϵ, the
radius ϵ gives an order of the singularity of the Green function, and a measurement of
distance to the point y, like r ∼ ϵ. The integrating element is reformulated using radial
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coordinates, like dSy ∼ ϵ2dω, where ω is a composure of angles between the axis (x, y)
and an axis of reference.

Using the latter conditions of continuity (2.22a), (2.22b), combining with the equiva-
lence measure of the surface element integration, the integrand is turned into a function
of ϵ, like O(ϵα). In fact the integrand can be bounded by a term of ϵα.

[q(y)G(x, y) −
(
u(y) − u(x)

)
H(x, y)]dSy = O (ϵα) dω (2.23)

For α > 0, this demonstrates the existence of the integral, even for a source point x
close to the boundary, or directly at the boundary. One can now study the limit when
ϵ→ 0. The integral on the boundary can be separated in two parts as ∂Ωϵ = (∂Ω \ eϵ)∪Se.
The integral exposed Eq. (2.19) can be linearly decomposed as follows:

∫
∂Ωϵ

jn(y)
K

G(x, y)−
(
U(y) −U(x)

)
H(y, x)dSy

=

∫
∂Ω\eϵ

jn(y)
K

G(x, y) −
(
U(y) −U(x)

)
H(y, x)dSy

+

∫
Sϵ

jn(y)
K

G(x, y) −
(
U(y) −U(x)

)
H(y, x)dSy

(2.24)

Passing to the limit with ϵ→ 0, we can first consider the integral on Sϵ, as ,

lim
ϵ→0

∫
Sϵ

jn(y)
K

G(x, y) −
(
U(y) −U(x)

)
H(y, x) = lim

ϵ→0

(
O(ϵα+1)

)
= 0

Thus passing all the integral Eq. (2.24) to the limit, this yields the establishment of the
integral equation on the boundary ∂Ω.

lim
ϵ→0

∫
∂Ωϵ

jn(y)
K

G(x, y) −
(
U(y) −U(x)

)
H(y, x)dSy

=

∫
∂Ω

jn(y)
K

G(x, y) −
(
U(y) −U(x)

)
H(y, x)dSy

(2.25)

2.1.6 Boundary Integral Equation for H

Now the existence of the boundary integral representation set on the boundary, the
problem can be simplified by computing the integral of H with a source on the boundary.
Its computation is detailed in Appendix B.1. It results in a value of 1/2 on the boundary.
The expression of the right hand side component under the integration can be developed
using an observation point at the boundary, considering the last value.∫

∂Ω

jn(y)
K

G(x, y)dSy =
1
2

U(x) for x ∈ ∂Ω (2.26)

This expression gives a rather simple form of integral equation which could be used
for source point on the boundary. Ultimately it just involves the integration of the Green
function with the normal flux. In our case, the normal or the potential could be solved
according to the boundary condition set.

2.1.7 Application to the conductivity of a contact spot

Problem of conduction between two half-spaces in contact

Now that the integral equation is set, we propose to treat the problem of conduction
between two half-spaces, Ω1 and Ω2 in contact. This problem was already considered in
[Barber, 2003], as was presented in the introduction.



56 Numerical Methods

For the following, the same subscripts 1 and 2, will be kept for the denomination of
all the variables in the respective half-spaces. The geometric configuration is displayed
as in Fig. 2.2.

Figure 2.2: Diagram of the conduction problem for two half-spaces in contact

The free-surface, between half-spaces, stands for the plane parametrized by z = 0,
while Ω1 occupies the space z > 0, and conversely Ω2 occupies z < 0.

Boundary value problem

The potential field is studied in each half-space, denoted by U1 and U2. For each half-
space, we still consider the assumptions previously presented, namely the bodies are
isotropic and homogeneous with linear conduction behavior. This yields the definition of
the conductivities, K1 and K2, for allΩ1 andΩ2, respectively. In addition, the conduction
is considered in its static regime. The two potentials follow Laplace equation :

∆Ui = 0 in Ωi (2.27)

Boundary conditions

At the free surface, the boundary conditions is split in two parts. By A we will denote
the area of conduction, where the potentials are equal, Eq. (2.28a), and the sum of normal
flux is equal to 0, Eq. (2.28b). Conversely, on Ā = A \ ∂Ω(z = 0), the complement part
of the free-surface, the normal flux are equal to zero, Eq. (2.29). This condition means
the radiation and the convection are neglected out of the contact area, especially for the
thermal problem. In the case of electrical potential, this assumes there is no tunnel-effect.

The exchange in term of thermal or electrical potential is set by a difference of potentials
at infinity. A boundary condition in term of flux is impossible at infinity; it would lead
to an infinite amount of energy. The distance from the center of the contact area A is
set to R =

√
x2 + y2 + z2. The potentials at infinity are set to U∞1 and U∞2 for Ω1 and Ω2

respectively, as described in equations(2.30a),(2.30b).
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Definition: Boundary conditions

Contact area, x ∈ A

U1(x) = U2(x) = U0
(2.28a)

jn,1(x) + jn,2(x) = 0 (2.28b)

Outside contact, x ∈ Ā

jn,1 = jn,2 = 0 (2.29)

At infinity, R→∞

U1(R)→ U∞1 (2.30a)

U2(R)→ U∞2 (2.30b)

In addition to those conditions, by symmetry, we could impose a uniform potential
over the contact areaA. This stands as Dirichlet condition, where U0 represents the value
of the potential atA. In practice, this aligns with a low variance of the potential field over
the contact area.

Equivalent problem of conduction in a single half-space

This problem of conductivity is linear, bringing a unique solution. The problem could be
taken on by another, with a single half-space geometry. For this, let us consider a potential
function Φ, in a half-spaceΩ, defined for z > 0. And this will be governed by the Laplace
equation, illustrated Fig. 2.3.

∆Φ = 0 in Ω (2.31)

Figure 2.3: Diagram for the equivalent problem of conduction in single half-space

At the free-surface, similarly to the uniform potential condition Eq. (2.28a), the poten-
tial is set equal to 1 on A. On the non-conductive contact area Ā, the normal flux is set
equal to 0. Those boundary conditions are supplemented by the condition at the infinite,
where the potential is set equal to 0. The difference of potential is namely imposed at the
contact areaA.

Definition: Boundary conditions for a single half-space problem

Contact area, x ∈ A

Φ = 1 (2.32)

Outside contact, x ∈ Ā
∂Φ
∂z
= 0 (2.33)

At infinity, R→∞

Φ(R)→ 0 (2.34)

From the function Φ, it is possible to retrieve the two potentials U1 and U2, by the
linear combinations as:

U(x, y, z) = U∞1 +
K2(U∞2 −U∞1 )

K1 + K2
Φ(x, y, z), in Ω1 (2.35a)
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U(x, y, z) = U∞2 +
K1(U∞1 −U∞2 )

K1 + K2
Φ(x, y,−z), in Ω2 (2.35b)

The normal flux at the free-surface derives from the function Φ,

q(x) = q(x, y, 0) = −
∂Φ
∂z

(x, y, 0) for x ∈ A (2.36)

One could also retrieve the value of U0 at the contact area, from the potentialΦ defined
as,

U0 =
K1U∞1 + K2U∞2

K1 + K2
(2.37)

Condition at infinity

This problem of potential in a half-space was already studied by Boussinesq
[Boussinesq, 1885], in the late of XIX century. For a problem following Laplace equa-
tion, with a punctual normal load on its free-surface, he established a response in terms
of a potential. He also settled for an elastic problem, that the displacement field decays
as R−1 while for the stress component this decays as R−2. The same observation holds the
problem of conduction in terms of potential and flux. In this way, we can formulate a law
of decay function of the distance R, when R is large enough compared to the dimension
of the contact area.

Φ = O(R−1), |∇Φ| = O(R−2) (2.38)

Application of the integral equation

This section aims to establish the integral equation according to the contact area defini-
tion. However, the integral equation formulated Eq. (2.26) appeals for a closed surface
definition with ∂Ω. This integral is not suitable for half-space geometry, this needs an
additional law of decay for the potential field and the normal flux at infinity.

First, we need a closed surface definition, as presented Fig. 2.4. The geometry is now
reduced to a semi-spherical body ΩR, with a closed boundary surface ∂ΩR. The radius
of this sphere is set to R. But by passing to the limit for R → ∞, we get back the initial
half-space geometry Ω.

Figure 2.4: Definition of a closed media ΩR with a radius of R

The boundary surface∂ΩR would be decomposed as followed, helped by the definition
of the areas at the free-interfaceA and Ā,
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∂Ωr = A∪ Ā ∪ SR, lim
R→∞

(∂ΩR) = ∂Ω

The left-hand side of the integral equation (2.26) can be decomposed according to the
latter surface definition :

∫
A+Ā+SR

jn(y)G(y, x)dSy =

∫
A

jn(y)G(y, x)dSy +

∫
Ā
���jn(y)
=0

G(y, x)dSy +

∫
SR

jn(y)G(y, x)dSy

The integral on Ā can be simplified thanks to the condition of zero normal flux.
The integral over SR can be expressed as function of R. For doing that, the element of
integration is replaced by dSy = R2dω using spherical parametrization. As the source
point x is taken on the contact areaA, while the point of integration is defined on SR, the
distance r in Green function is similar to R, when R assumed large enough. Ultimately
the normal flux condition decay can be added to Eq. (2.38).

∫
∂ΩR

jn(y)G(y, x)dSy =

∫
∂ΩR

O(R−2)O(R−1)R2dω

=

∫
∂ΩR

O(R−1)dω

= O(R−1)

As R approaches infinity, the value of this integral tends to 0.

lim
R→∞

∫
∂ΩR

jn(y)G(y, x)dSy = 0

Thanks to this limit, the integral over ∂Ω can be defined as,∫
∂Ω

jn(y)G(x, y)dSy =

∫
A

jn(y)G(x, y)dSy

Finally we get a new definition for the integral equation in a half-space, in particular
for points on the contact areaA, as presented below.∫

A

jn(y)G
(
∥x − y∥

)
dSy =

1
2
Φ(x) for x ∈ A (2.39)

In the integral, we prefer the definition of G accounting for the distance r = ∥x− y∥, which
emphasizes the invariance by translation and rotation.

Motivations for integral equation

The integral equation(2.39) takes advantage of the physical properties of the problem for
conduction in the half-space. The problem is finally reduced to the true contact area A.
Nevertheless, this expression does not account for specific conditions at the contact area.
But convective condition could be added, considering an integral component over Ā,
being a function of U and H. Similarly, a source term, like in the Poisson equation, can be
added. This would just induce an integration within the solid Ω.

This problem is also equivalent to the problem of elasticity. In fact it could be resumed
by an integral relation between pressure, p, and normal displacement uz, on a contact area
A. It is noteworthy the problem of elasticity remains linear. The integral equation would
rely on the effective elastic modulus, E∗ as presented below.

2
E∗

∫
A

p(y)G(x, y)dSy = uz(x)
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2.2 Boundary Element Method

The integral equation permits the resolution of the problem of conduction. Based on
this equation, the Boundary Element Method (BEM) aims to solve this problem utiliz-
ing methodologies analogous to those found in the Finite Element Method (FEM). In
essence, the integral equation necessitates the interpolation of the physical fields and the
discretization of the boundary of the domain in questionA.

This section outlines the development and formulation for the BEM, tailored to the
integral equation (2.39). This will involve numerical techniques, commonly used for the
FEM, such as shape functions and discretization. A special care is brought to the definition
of numerical integration. The BEM results in the definition of a linear system. Different
models of interpolation and mesh element will be investigated, seeking for accuracy and
physical consistency.

2.2.1 Discretization and linear system definition

Mesh definition

The first step of the discretization process involves partitioning the boundary into separate
elements. The integral Eq. (2.39) is exclusively concerned with the geometry of the contact
area. We start by discretizingA into sub element of boundary, as follows:

Definition: Mesh discretization

For a surface A, the discretization pertains to the definition of a set of separated
elementsAe, as :

A =

Ne⋃
e=1

Ae (2.40)

whereAe represents the e-th element, part of the boundary, and Ne is the total number
of these elements. The union of them reassembles the complete surface initially
considered.

These elements inherit properties of the boundary, especially its dimension. The
discretization of the boundary like A, yields the separation of the equation(2.39) into a
sum of integrals, as follows,

Ne∑
e=1

∫
Ae

jn(y)
K

G
(
∥x − y∥

)
dSy =

1
2

U(x) (2.41)

Where the integration point y belongs to separated elementAe.

Reference element

The BEM requires to compute the integral of the Green function over the mesh element.
Each element has its own geometry. The reference element, denoted by ∆e, aims to
streamline the computation for any boundary elements Ae, hence the integration. First,
it provides a common and simple shape of element of integration. The physical mesh
geometry is defined through a discrete set of geometrical points {y j}. Secondly, it also
reduces the physical space of the geometry. A curved boundary element becomes planar.
Referring to this last point, two examples are presented in Fig. 2.5, and Fig. 2.6, for
quadrangular and triangular elements, respectively. The physical space, depicted in blue,
belongs to a three dimensional space, R3, while the element of reference is set within a
two-dimensional space R2.

The reference space coordinates are denoted by ξ = (ξ1, ξ2). In the context of our
boundary element method, all the boundary elements Ae are assumed to be planar,
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Figure 2.5: Regular square of the reference element (left) for a quadrangular boundary
element in the physical space (right)

Figure 2.6: Isosceles triangle of the reference element (left) for a triangular boundary
element in the physical space (right)

which simplifies the geometric considerations. Examples of commonly employed refer-
ence elements, including those for triangular and quadrangular shapes, are detailed in
Appendix B.2.

Shape functions

Once we get the geometry of the boundary element, and the reference element, we need
the set of shape functions. Those are designed to create a bijection between a set of physical
points {yi

} and a set of reference point {ξ} on ∆e. The parametrization is defined as shown
below, in which the shape functions are denoted by Ni.

Definition: Shape functions change of variable

Ni is the shape function related to the physical node yi, and enables to define physical
space coordinate y as considered in the following expression:

y(ξ) =
n(e)∑
i=1

Ni(ξ)yi (2.42)
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With n(e) is the number of nodes on the element Ae, and ξ is the coordinate in the
reference element.

The set of physical points {y} are defined in agreement with the degree of interpolation
wanted for the geometry, and the shape of boundary element. An example is presented
in Fig. 2.7, depicting a quadrangular element, bearing quadratic interpolation. Insofar, it
brings the number of construction point n(e) to 9. In the formula(2.42), the physical points
are labeled with an index i, related to the local numerotation of the boundary elementAe
as in Fig. 2.7.

Figure 2.7: Representation of geometrical node for an example of quadratic quadrangular
boundary element with 9 nodes

The shape functions used in boundary element methods are commonly represented
by polynomials. Some examples of those are presented in Appendix B.2. The shape
functions must ensure to get the physical coordinates at the corresponding reference
nodes. This condition is summarized as,

Ni(ξ j) = δi j (2.43)

where δ stands for the Kronecker’s symbol. Subsequently, these shape functions provide
a partition of unity on the reference element as:

n(e)∑
i=1

Ni(ξ) = 1, for ξ ∈ ∆e (2.44)

Considering a polynomial for the shape function, these are acknowledged for their
simplicity, and their geometric consistency. The needed order of interpolation depends
on the shape of the boundary element, or on the desired accuracy of interpolation. They
allow to follow curved boundary element with quadratic interpolation, or even with
Bezier curves in the case of isogeometric analysis (IGA) [Hughes et al., 2005].

Change of variable and integral

The use of shape functions allows us to establish a relation between the physical coordi-
nates y and the reference coordinates ξ. In addition, the aformentionned parametrization
allows to streamline the computation of the integral (2.41).

Using ξ as the variable of integration instead of y, reduces the integration over ref-
erence element. The change of variable is borne by the defined of the Jacobian function,
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which stands for the determinant of the Jacobian matrix. The Jacobian function and the
Jacobian matrix are defined as follows,

Ji j =
∂yi

∂ξ j
, J = det(J) (2.45)

With J represents the Jacobian function, and J is the Jacobian matrix. J is a matrix, and
its components are defined as the derivatives of the physical coordinates y along the
reference coordinates ξ. The Jacobian function varies with ξ. However, for the linear
shape functions, whose derivatives are constant, the components of J are also constant
hence the Jacobin function. It is worth noticing that the geometric interpolation is injective,
which makes the change of variables valid. In a general sense, the integral with a kernel
function f over the surfaceAe can be reformulated using ξ over an element of reference,
as follows, ∫

Ae

f (y)dSy =

∫
∆e

g(ξ)J(ξ)dsξ with g = f ◦ y (2.46)

Recalling Eq. (2.41), f stands for the Green function multiplied to the normal flux jn
divided by the conductivity K. The field jn is approximated by the field interpolation,
which involves the definition of interpolation function in turns. The next section aims to
detail this process.

Discretization for the unknown

This part will give details of the representation of fields on the boundary following a
similar approach as used in the FEM. The fields U and jn integrated in Eq. (2.41) are
approximated by Ũ and j̃n, as follows,

Ũ(ξ) =
m(e)∑
k=1

Mk(ξ)Uk, for ξ ∈ ∆e (2.47a)

j̃n(ξ) =
m(e)∑
k=1

Mk(ξ) jkn for ξ ∈ ∆e (2.47b)

Where Mk is the interpolation function, which could be different from those used for
the geometry ( Ni ). The fields are sampled out over a set of m(e) number of node fields,
denoted by {yk

}. Those nodes are defined on the boundary elementAe, such as Uk = U(yk)
and jkn = jn(yk).

Different kind of interpolation functions may be considered. In a general sense, the
interpolation can be either iso-parametric, sub-parametric or super-parametric.

If the parametrization is conformal, the same coordinates would be used for both the
geometric nodes and the collocations points. This yields the interpolation functions being
continuous at the neighboring elements. Conformal interpolation appears to be more
straightforward, recognized for its simplicity and accuracy [Beskos, 1987]. Conversely,
for non-conformal parametrization, different nodes are used for the geometry and the
fields.

In an iso-parametric interpolation, the same shape functions, Ni, are employed as
interpolation functions, Mk. This ensures the interpolation being conformal. It would
result in a sub-parametric interpolation if the order of interpolation is smaller than this
of shape functions, or super parametric for a higher degree. Like for the shape function,
different interpolation functions might be explored, seeking for better consistency, or
accuracy. In the sake of generality, the physical and geometric interpolations are assumed
to be different in the next section 2.2.2. But at the end, we will use conformal sub-
parametric, and iso-parametric configurations.
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2.2.2 Construction of the linear system

All the mathematical tools are now available for the physical resolution of the integral
equation(2.41). The discretization will provide a discrete physical description for the
fields U and jn, supported by the mesh definition. The integral equation is verified
over a set of Nc physical nodes, also known as collocation points, with coordinates xc

(1 ≤ c ≤ Nc). The normal flux is substituted by its approximate expression j̃n, combining
with the interpolation Eq. (2.47b), and as well for the potential replaced by Ũ using the
interpolation Eq. (2.47a).

1
2

Ũ(xc) =
Ne∑
e=1

∫
Ae

j̃n(y)G(xc, y)dSy (2.48)

The integration on the boundary elements can be calculated using the integration on
the reference element. The change of variable is expressed using the formula Eq. (2.46),
which involves the Jacobian function. It incorporates a sum under the integral operation
on the boundary element, and involves Mk (functions of interpolation). All these steps
combined lead to the following formulation on collocation point xc.

1
2

U(xc) =
Ne∑
e=1

m(e)∑
k=1

(∫
∆e

Mk(ξ)G(xc, y(ξ))J(ξ)dsξ

)
jnk

 (2.49)

Since we use conformal discretization the same ξ variable can be used under the integral.
The formulation requires at least one collocation point in every boundary element, which
means that the number of collocation points Nc must be greater or equal to the number
of boundary elements Ne. The Green’s function is singular, when xc lies in the boundary
element Ae, but regular elsewhere. This singularity requires special treatment, making
the integrating process. In Eq. (2.49), the location of the collocation points has not been
specified yet. Different integration process are defined, according to the position of the
collocation point, such as quasi-singular integration or singular integration. They will be
detailed in the following Section 2.2.3. Ensuring accurate and efficient handling of these
singularities is crucial for the successful resolution of the integral equation, otherwise the
overall accuracy is jeopardized. First, the general algorithm for the construction of the
matrix of integration is developed in the next sections.

General algorithm for matrix construction

The expression(2.49) can be transformed into a linear system. The integration of the
Green’s function can be summarized in a matrix G, and be separated from the normal
flux term. Each row of the matrix is multiplied by the normal flux vector taken at the
physical node of field, and denoted by { jnc

}. The right-hand side is given by the potential
Uc = U(xc) at points of coordinates xc. This results in the following system of equations:

1
2
{Uc
} = [G]{ jnc

} (2.50)

The explicit formulation of Gi j, does not appear very straightforward, due to the
interpolation and the shape function use. Those components are computed according to
the algorithm 1.

This algorithm relies on the definition of the integral functions Ising and Insing, as
detailed below:

Ising(xc, e, k) =
∫
∆e

Mk(ξ)G
(
xc, y(ξ)

)
Je(ξ)dsξ, with xc

∈ Ae (2.51a)

Insing(xc, e, k) =
∫
∆e

Mk(ξ)G
(
xc, y(ξ)

)
Je(ξ)dsξ, with xc < Ae (2.51b)
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Algorithm 1: Implementation of the matrix G

1 for i← 1 to Nc do
2 xc

← Xc[i] ;
3 for e← 1 to Ne do
4 for k← 1 to n(e) do
5 if xc

∈ Ae then
6 Gi j = Gi j + Ising(xc, e, k)
7 else
8 Gi, j = Gi, j + Insing(xc, e, k)

These functions differ from the location of the physical node xc (also known as collocation
point), to the boundary element Ae. The index k relates to the shape function Mk. Ising
stands for the integration process when the collocation point lies in the boundary ele-
ment, while Insing is defined for a collocation point outside of this element. Nevertheless,
when the collocation point is outside of the boundary element, it can still require spe-
cial treatment to enhance the accuracy of the integration. Special use case will be next
developed, which could emphasize the key aspect of the need in accuracy.

Algorithm 1 involves three loops in total. The first one refers to the collocation point
definition, i stands for the line index. The second one is made to explore the boundary
element. And the last loop travels along k, the index on the interpolation function.

The matrix component Gi j is incremented at line and row positions i and j, respectively,
calling the integral functions Ising or Insing. This process will define the matrix G entirely.
This matrix appears to be fully-populated, unlike the stiffness matrix in FEM for instance.
The fully-populated nature of the matrix [G] represents a significant drawback for the
BEM. It arises that the complexity is about O(N2

c ), demonstrating in terms of time and
memory requirements. Tackling this problem, various techniques collectively referred
as Fast-BEM have been developed. These techniques aim to improve the efficiency and
scalability of the BEM, and will be discussed in more detail in section 2.3.

Simplication for a constant physical interpolation

The last implementation suggests a definition of the matrix [G], in a general sense. How-
ever, an important simplification may arise from the constant interpolation. With Mk = 1,
it entails a single collocation point for each boundary element, reasonably defined as
barycenter point of the boundary elements. The collocation point and the boundary
element could share the same indexation, revealing Nc = Ne, likewise the number of
collocation point is equal to the number of boundary element. The normal flux on the
boundary elementAe is defined as jne = jn(xe). This simplification yields a new integral
formulation:

1
2

U(xc) =
Ne∑
e=1

(∫
∆e

G(xc, y(ξ))J(ξ)dsξ

)
jne (2.52)

It retains, however, the definition of the integral functions, for singular and non-singular
use case,

Jsing(xc, e) =
∫
∆r

G
(
xc, y(ξ)

)
Je(ξ)dsξ, for c = e (2.53a)

Jnsing(xc, e) =
∫
∆r

G
(
xc, y(ξ)

)
Je(ξ)dsξ, with c , e (2.53b)
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Those functions simply take as input xc (the point coordinate), and e the index of the
boundary element. Those functions return straightforwardly the components of G, with-
out incrementation. It leads to a simplified algorithm 2, which just involves two loops.
Only the diagonal term are computed as singular integral.

Algorithm 2: Implementation of the matrix G for constant interpolation

1 for i← 1 to Ne do
2 xc

← Xc[i] ;
3 for j← 1 to Ne do
4 if i = j then
5 Gi, j = Jsing(xc, j)
6 else
7 Gi, j = Jnsing(xc, j)

2.2.3 Numerical integration

The construction of the matrix G pertains to compute integrals holding for its components.
The integration process can be speed up by Gaussian quadrature technique, commonly
used for FEM. The calculation of integral relies on a weighted sum that provides a reliable
method in most cases. This method is acknowledged for its precision, in the case of
a polynomial function, like for FEM. However, it presents some limitations for non-
polynomial kernel function, which are common for BEM kernels. This section aims to
present numerical methods for the integration used for BEM.

Gauss quadrature

Method: Gaussian quadrature

The Gaussian quadrature method enables to transform an integral into a weighted sum,
as follows, ∫ 1

−1
f (x)dx ≈

N∑
i=1

wi f (xi) (2.54)

With N is the number of the weighted terms involved in this sum. The coordinates xi
represent the Gauss point, and wi are their associated weights.

The integral on the left-hand side relies on the segment [−1, 1]. The coordinates of these
points and the weights are tailored to make this formula exact for monomial integration
as long as its degree is less than 2N, that enables to compute exactly the integral of the
polynomial xk over the segment [−1, 1], as follows,

∀ 0 ≤ k ≤ 2N − 1,
∫ 1

−1
xkdx =

N∑
i=1

wixi
k (2.55)

In the case of FEM, the kernel function is polynomial. The degree of this latter depends
on these of the shape and interpolation functions. Thus, the number N of Gauss points is
tuned according to the order of interpolation, the rank of the shape functions.

The Gauss points are defined within the integration segment, i.e. ∀(i,N), xi ∈ [−1, 1].
The weights are all positive. The Gauss point distribution is symmetrical around the center
of this integration segment, as the same for the weights, i.e, ∀(i,N), xi = xi−N,wi = wi−N
The approximation can be extended to the integration on any surface element, or for a
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volume. The example of the following integral represents the integration of a kernel
function f over an arbitrary element ∆e.

∫
∆e

f (ξ)J(ξ)dsξ =
∫ 1

−1

∫ 1

−1
f (ξ1, ξ2)J(ξ1, ξ2)dξ1dξ2 ≈

N∑
i=1

N∑
j=1

wiw j f (xi, x j)J(xi, x j) (2.56)

Where det (J(ξ1, ξ2)) is the determinant of the Jacobian matrix which maps the reference
element to the physical one.

The integration of other shapes, such as the triangular, is quite straightforward. The
corresponding Gauss point coordinates and weights are well known, and are commonly
used as those for quadrangular elements. Some values are reported in appendix B.2.

Integration for Green function

In scenarios where the kernel function, such as the Green’s function in the BEM, exhibits
singular behavior, the traditional Gaussian quadrature may not provide an accurate
approximation. A numerical discrepancy arises when the source point is close to the
element of integration, rendering the polynomial approximation ineffective. For a clear
understanding, consider a numerical example as depicted in Fig. 2.8, where we study the
integration over a regular square built like a reference element.

Figure 2.8: Geometrical representation of the practical use case for numerical integration
assessment

The objective is to evaluate the integration error using Gaussian quadrature when a
source point, denoted by x, is placed at varying distances along the x-axis from the center
of the element. The source point’s alignment along the abscissa simplifies the calculation
of the interaction coefficient, as :

I(x) =
∫
∆e

G(x, ξ)dSξ, for x ∈ R+ (2.57a)

G(x, ξ) =
1

4π
√

(x − ξ1)2 + ξ2
2

(2.57b)

When the source point, denoted by x, falls within the interval [0, 1], this also falls within
the reference element. This proximity to the element induces a singularity in the function
G, when ξ = x. Nonetheless, the integral of interest remains well-defined, and must
be computable. Some results are presented in Fig 2.9 where the integral function I is
evaluated using a varying number of Gauss points, intending to improve its precision.

In Fig. 2.9, a dark region highlights the domain where the kernel function becomes
singular, such for x ≤ 1. This dark region is surrounded by a lighter gray area, which
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Figure 2.9: Integral computation comparison for different number of Gauss point along
the distance

describes a quasi-singular domain. This area delineates the range in which the precision of
the numerical integration method is most vulnerable due to the near-singular nature of the
Green’s function. The transition from the singular to the quasi-singular region is critical
and necessitates careful numerical treatment to ensure the accuracy of the integration.
For comparison, the exact solution is reported as Inum, in Fig. 2.9.

The curves in Fig. 2.9 vary with the number of used Gauss points. Specifically,
when an odd number of Gauss points is aligned along an axis-considering cases where
N = {1, 3×3, 5×5}, the curves reveal strong singularities, as some Gauss points are placed
along this ξ1-axis. Thus the source point can intersect those, inducing singular behavior

as r =
√

(x − ξ1)2 + ξ2
2 → 0. The results are normalized by the potential maximal value,

denoted by I0. It is obtained for x = 0, when the source point aligns with the middle of
the reference element. Its analytical calculation is reported below.

I0 =

∫ 1

−1

∫ 1

−1

1

4π
√
ξ2

1 + ξ
2
2

dξ1dξ2 = 8
∫ π/4

0

∫ 1/ cos(θ)

0

�r
4π�r

drdθ (2.58)

⇔I0 =
2
π

∫ π/4

0

dθ
cosθ

=
4
π

tanh−1
(
tan

(
π
8

))
⇒I0 ≈ 0.56110

The precision required depends on the specific needs of the problem being solved. How-
ever, due to the ill-conditioning of the matrix G, a high level of accuracy is generally
needed to obtain reliable results. Notably, errors exceeding 1% have the potential to
significantly impact the ultimate solution.
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Definition of severity

Defining index of severity Is, provides an enlightening measurement of the relative position
of the source point x with respect to the element of integration. The formula for Is was
empirically determined reported in [Rezayat et al., 1986].

IS = (2.37 + 0.424 cos(θ))
D
d

(2.59)

With D represents the size of the element, d is the distance from the source point to the
center of the element ( d = ∥OeX∥), and θ is the angle defined between the normal vector
n and the vector OeX. All these parameters are illustrated in Fig. 2.10. This index can be
used to define the number of Gauss points needed :

N = ⌊IS⌋ + 1, IS ≤ 5 (2.60)

Figure 2.10: Representation of a curved element with parameters defined for the index
of severity

Since the entire boundary surfaceA is flat in our case, the angle θ between any source
point and any boundary element is equal to π/2. It simplifies the formulation of IS, just
involving to the ratio of D and d as,

Is = 2.37
D
d

The order of integration N is determined based on the index of severity Is, which is
calculated as its upper integer part, but bounded by 5. The resulting error is depicted in
Fig. 2.11. The accurately calculated integral numerical function, Inum is considered as the
solution of reference, enhanced by a loop of convergence. Different regions are annotated
according to their Is values, highlighting the different rank N used. This facilitates the
selection of a suitable order N for the Gaussian quadrature method, guaranteeing an
acceptable accuracy threshold for the problem being addressed.

The figure Fig. 2.11, reveals that the error decreases as the rank N increases. The
definition of the index of severity Is enables to adapt the rank N based on the absolute
value of the integral and the relative distance d between the source point and the element
of integration. However when the rank N increases, the computation time rises in turns.
Overall, the combination of Gaussian quadrature with adaptive rank selection based on
the index of gravity Is provides a balanced trade-off between precision and computational
efficiency.
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Figure 2.11: Integral computation comparison for different number of Gauss point along
the distance

In the numerical example presented, the error remains relatively low, even at the
boundary of the quasi-singular interval. This limit is defined when Is = 5, so x =
2.37 2

√
2/5 = 1.37. However, as the source point is deriving within the quasi singular

domain, the error increases markedly. This emphasizes the necessity for further strategies
to manage the quasi-singular zone. These strategies are outlined below, comparing these
different methods to tackle quasi-singular integration.

Quasi-singular integral

To adapt the Gaussian quadrature technique for application within the quasi-singular
range, an initial approach might be to increase the number used of Gauss points. This
adjustment would, without doubt, refine the accuracy of the solution even in the presence
of the quasi-singularity caused by Green’s function. A smarter strategy, however, would
involve devising a transformation that aligns with the behavior of the integrand function
field.

Within this section, we detail three such transformations aimed to regularize the near-
singular nature of the integrand. The first involves a straightforward cubic polynomial
transformation, whereas the subsequent two employ transformations based on radial
coordinates.

Cubic transformation This transformation aims to gather points in agreement with the
integrand function. Telles [Telles, 1987] provides a method of regularization by applying
a cubic transformation, following the next definition.

η =
1 − Jη

1 + 3ξ̄2

(
(ξ − ξ̄)3

+ ξ̄(ξ̄2 + 3)
)
+ Jηξ ∈ [−1, 1] (2.61)
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This method appeals to the definition of a new set of integration coordinates, substi-
tuting (ξ1, ξ2) by (η1, η2). The initial coordinate ξ lies within the interval [−1, 1], as well
as the new coordinates η. The definitions of Jη and ξ̄ involved in equation Eq. (2.61) are
detailed in Appendix B.3.1. Fig. 2.12, illustrates the chain of coordinate definition from
the physical coordinates belonging to the boundary element geometry Ae, to the refer-
ence element. The system of coordinate η remains unchanged concerning the reference
element ∆e.

Figure 2.12: Chained coordinate, with a near source point definition

The source point x is assumed to be outside of the boundary element Ae, but quite
close to it, making the index of severity high. Its coordinates correspond to ξ̄ and to η̄
through successive changes of variables. The distance d is normalized as it is considered
in the element of reference ∆e. The shape of the transformation is adapted from this
distance, by Jη. The closer the source point is, the tighter the transformation would be
around ξ̄. Two examples are displayed in Fig. 2.13, using each (8×8) points of integration.

ξ1

ξ2ξ̄

ξ1

ξ2 ξ̄

Figure 2.13: Examples of repartition of integration points, using a self-adapted cubic
tranformation

The distribution of the integration points are now changed from the original Gauss
point arrangement. The integration will account for the additionnal change of variable
(ξ1, ξ2)←− (η1, η2), entailing modified weights ω̃ for the Gaussian quadrature integration
(see Appendix B.3.1).

Cylindrical transformation Considering the form of the kernel function, it appears that
the radial transformation can also be used to evaluate it with the highest accuracy. Indeed,
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a function varying as 1/r, multiplied by a term equivalent to the distance r, becomes
regular, or even constant. This term can be obtained through the radial transformation.

This transformation can be expressed by triangulating the reference element. It is valid
for both triangular and quadrangular elements. An example is shown in Figure 2.14.

ξ1

ξ2

ξ̄

ξ̄0
∆e,1

∆e,2

∆e,3

ξ(ρ, θ)

ρ

θ

Figure 2.14: Example of triangular separation and cylindrical parametrization on a
element of reference

The point ξ̄′ represents the orthogonal projection of ξ̄ onto the edge of the closest seg-
ment of the reference element. Having identified this projection, we proceed to partition
the reference element into separate triangular segments. This subdivision enables the de-
termination of ξ’s coordinates using the cylindrical system denoted by (ρ, θ). Within each
triangular segment∆e,n, the angular coordinate θ varies within a range, (θm

n , θ
M
n ). Fig. 2.14

gives an example of the parametrization, displaying three triangular divisions. It is worth
noticing, when ξ̄′ coincide with a vertex, the division is reduced to two triangles.

The radial coordinate limitρ relates to the angular locationθ. The height of the triangle
is denoted by hn and its angular position is defined as αn. The integration transformation
leveraging these parameters, and further details are presented Appendix B.3.1. Like
for the cubic transformation, the radial transformation entails the modification of the
weights. Two examples showing the distribution of integration points are demonstrated
in Fig 2.15, taking the advantage of the radial transformation.

Projection and Angular and Radial Transformation (PART) Compared to the ra-
dial transformation the location of integration points around the mean radial position
may be subsequently adjusted according to the position of the projection ξ̄. This has
motivated the PART method, which uses additionnal radial and angular transforma-
tions [Hayami and Matsumoto, 1994]. The initial radial coordinates, defined as ( ρ, θ
), are then transformed into ( R, t ). These transformations accounts for the late radial
transformation, with h the height of the triangular part, and α its angular position.

The angular transformation is defined as

t =
h
2

log
{

1 + sin (θ − α)
1 − sin (θ − α)

}
(2.62)

While the radial transformation could account for either L1 or L2 transformation, as
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ξ1
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ξ2 ξ̄

Figure 2.15: Examples of repartition of integrating point, using a cylindrical scattering,
The left-hand side accounts for two separating triangular elements (the projection ξ̄
aligning with a vertex), and the right-hand side comprises three parts. Each triangular
section is constructed using a grid of 8× 8 Gauss points, with a concentration around the
location ξ, and its projection ξ̄.

follows:
L1 B R = exp

(
ρ/ρmax

)
(2.63a)

L2 B R = exp
((
ρ/ρmax

)2
)

(2.63b)

Where ρmax is the contour radius. The derivative of the angular transformation is equal
to dt = dθ/ρmax. The two variables (R, t) are then readjusted to align with the initial
intervals [0, ρmax] and [θm, θM], respectively. Those transformations for angular and radial
component are presented on the left and right hand side of Fig. 2.16, respectively. These
transformations take into account α = 0, h = 2, and θ ∈ [−π/4, π/4], which refers to the
middle triangle geometry on the right-hand side in Fig. 2.15. The radial transformation,
R is scaled with ρmax, following the prescribed bounds.

t

θ−π4

−π4

π
4

π
4

ρ/ρmax

R

0

L2

L1

Figure 2.16: Representation of the angular (left), and the radial (right) transformation
using in the PART method

The PART transformation is twofold motivated. First, the radial transforma-
tion concentrates integration points closer to the ρ = 0 region. These radial trans-
formations are designed to get a minimal derivative value at ρ = 0, as shown
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in [Hayami and Matsumoto, 1994]. The authors rather recommend the use of L1 trans-
formation than L2. Second, the angular transformation redistributes integration points,
distancing them from the edges of the triangular segments. However, this transformation
is nearly linear in nature, which casts doubt on its potential for substantial improve-
ment. Illustrations of these transformations are depicted in Figure 2.17, which allows for
a direct comparison with the previously discussed radial segmentation (highlighted by
orange points). The effect of the radial transformation is evident in the denser clustering
of integration points around the point ξ̄′.

ξ1

ξ2ξ̄

ξ1

ξ2 ξ̄

Figure 2.17: Examples of repartition of integrating point using Part method (red), and
original cylindrical parametrization (orange)

Performance In summary the method’s capability, we evaluate the error against a vary-
ing number of integration points. We consider the case presented by the geometry on the
right-hand side of figures 2.13, 2.15, and 2.17. The results in terms of error are summa-
rized in Fig. 2.18. The example accounts for a source point ξ̄ located at η′ = (0, 1.1), with
the distance parameters d1 = 0, and d2 = 0.1, for the cubic transformation.

The decay of the error as a function of the number of integration points is observ-
able, and the efficacy of the PART method over a simple cylindrical parametrization is
evident. Despite this, the cubic transformation presents better performance, although its
error decay is non-monotonic along the number of integration points. This observation
might incline us to favor the cubic transformation over others, as it does not the need
for additional steps for the geometric division into triangular sections. Regrettably, this
transformation is not applicable for triangular boundary elements. For triangular bound-
ary elements, we opt for the PART method. We also decide to use it for quadrangular
boundary elements in the sake of consistency.

Singular integral

The study of quasi-singular integral brings us now to the study of singular integrals.
The methods presented in the previous section can be readily applied to a quadrangular
reference element, with few adjustments.

Along this section we will consider the most uncertain example, as the observation
point is located at the middle of the element of integration. However, in a general sense,
the singular integration could stand for any point of observation inside the element of
integration, like on the edges or vertex of the element of integration as presented Fig. 2.7.
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Figure 2.18: Examples of repartition of integrating point using PART method (red), and
original cylindrical parametrisation (orange)

Parametrizations Now, the observation point x is located within the reference element.
For this investigation, we will focus exclusively on a source element positioned at the
center of the reference element, denoted by η = (0, 0).

Beginning with the cubic transformation, its implementation is quite straightforward
in this context. The cubic transformation is directly defined as ηi = ξ3

i for i ∈ 1, 2, to the
limits of the reference element, with ξ ∈ [−1, 1]. However, this works only for an even
number of Gauss points, as the point must not coincide with η = (0, 0).

The radial and PART method both entail the division of the reference element into four
triangular sections. All the geometric parameters needed are presented in Appendix B.4.
With the observation point’s location predetermined, the division into triangular areas is
well established. Unlike the process for quasi-singular integration, here, the placement of
integration points solely depends on the number of used Gauss points. The distribution
of point of integration are shown in Fig 2.19 for the cubic, cylindrical, and PART methods.

ξ1

ξ2

ξ1

ξ2

ξ1

ξ2

Figure 2.19: Distribution of the integrating point for the cubic (left) , cylindric (center),
and PART (right) transformations in the case of the singular integral computation

Performance The exact value of integral of the Green function is known for that geome-
try, notably I0 ≈ 0.56110 Eq. (2.58). The results of the integration can be readily compared
with this value. The resulting error is presented in Fig. 2.20, for a varying number of
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point of integration.
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Figure 2.20: Precision comparison of different transformation for the singular integration

The error decreases as the number of integration points increases. Yet, unlike the
quasi-singular integration outcomes, the cubic transformation now appears less precise,
reaching a minimum error of 0.27% for 400 integration points. Both the cylindrical trans-
formation and the PART method yield identical results. The supplementary steps taken
by the PART method appears useless in this context. Nevertheless, these strategies seem
particularly effective for singular integrals, resulting in even smaller errors compared to
those observed in quasi-singular integration scenarios.

A similar analysis can be executed for triangular elements, positioning the point of at
η = (1/3, 1/3) within the reference element. The precise value for this reference element
is also well-documented.

These findings are detailed in Appendix B.4 and include assessments of the cylindrical
and PART transformations. They both deliver consistent results, though the accuracy is
approximately 10−6 for 400 integration points. This indicates a slightly lower precision
for triangular elements than for quadrangular ones.

2.2.4 Validation with circular contact spot

The integration procedure is ready to assemble the matrix G, after which the linear
system as defined eq. 2.50 can be solved. Our method has been developed with a broad
perspective, without any limitations neither on the shape of the mesh elements nor the
interpolation functions used.

This section is dedicated to present some results and evaluating the overall method’s
performance. For this purpose, we have focused on the example of the circular contact
spot subjected to a constant potential condition. As outlined in the initial part of this text,
this particular problem has the advantage of a known analytical solution, which provides
the normal flux field and the total flux transferred through the contact spot.

Model and mesh

Testing different configurations, we compared the results obtained by different element
shapes, notably triangular and quadrangular, with constant and linear interpolation,
denoted by P0, and P1, respectively.
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As we know, the flux is singular at the edge of the contact spot. Its simulation will
require special attention controlling the mesh size on the edge. For mesh construction,
we refine the mesh at the edge and coarsen in the center, aiming to minimize the quantity
of unknowns. In practice, an element size hmin is set on the edge, and h0 conversely at the
center of the spot, with h0 > hmin, specifically we set h0 = 2hmin.

The four numerical settings are presented Fig. 2.21. These figures showcase some
outcomes of the normal flux overlaid by the designated mesh layout. The number of
collocation points is equal to the number of elements when constant interpolation P0 is
used. For the linear interpolation P0, or iso-parametric, the mesh nodes coincide with the
physical locations of the unknowns.

The fields so computed look different on the edge from the two different interpolation
P

0, and P1. In fact for the linear interpolation P1, the unknowns are located on the edge,
where the singularity is lying. This will disturb the positiveness of the normal flux near
the edge, where the negative flux value can happen. Conversely, in the case of constant
interpolation P0, the normal flux remains positive at every point.

Total flux

The total flux is readily calculable by combining the array of elemental areas {|Ae|} with
the corresponding nodal normal fluxes { jn,c}. In the examples at hand, the total flux
computation is governed as follows for P0, and P1 interpolations.

P
0 interpolation

Q =
Nc∑
c
|Ac| jn,c (2.64)

P
1 interpolation

Q =
Ne∑
e

|Ae|
∑
c∈Ae

jn,c
m

 (2.65)

With m the number of nodes per element. This leads to a factor of one quarter for
quadrangular element, and of one third for triangular shape element, that arises from the
integration of the shape function across the element.

The error value is then defined in term of the total flux compared to Q◦ for the circular
contact spot (see Section 1.1.2),

Er =
|Q −Q◦|

Q◦

Influence of the element size

Notably the physical representation of the normal flux depends on the mesh size h, and
on the degree of interpolation, p. It is commonly assumed that FEM convergence is as
hp for stresses. However, as in the BEM, the order of interpolation is related to the flux,
then the order p is 1 for PO, and 2 for P1. It shall be the same for BEM. To assess of the
convergence behavior, we compute the solution of a circular contact, for various element
size h. The outcomes are presented in Fig. 2.22.

The flux varies as an affine function of the element size, as :

Q = Q∞ + bh

Where Q∞ represents the limit of the flux when h → 0, b is the convergence slope rate
related to h. b is negative for P1 interpolation, and positive for P0 interpolation. All the
coefficients are summarized in Table 2.1, with the coefficient of correlation r2 included.

In every model, the error appraise the numerical accuracy, and the self-consistency
of BEM. The convergence features differ between different models. The affine trend
in the convergence of the total flux is also related to Richardson’s method of result
extrapolation [Richardson, 1911]. This technique relies on the extrapolation of the total
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Triangular, P0

Nc = 502, Er = 1.31%

Quadrangular, P0

Nc = 247, Er = 1.67%

Triangular, P1

Nc = 284, Er = 1.86%

Quadrangular, P1

Nc = 280, Er = 0.88%

0.00 1.00 2.00 3.00 4.00

jn

Figure 2.21: Result of normal flux with triangular and quadrangular elements, using
constant or linear interpolation, with hmin/r0 = 0.1 and h0/r0 = 0.2 as element size, at the
edge and in the center, respectively
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Figure 2.22: Result of the integrated flux as a function of the element size, hmin.

Coefficients Error

Model Q∞
Q◦

b
Q◦

|Q∞−Q◦|
Q◦ r2

Triangular, P0 1.0007 −0.067 0.09% 0.996
Quadrangular, P0 0.996 −0.059 0.67% 0.914

Triangular, P1 0.999 0.0914 0.07% 0.994
Quadrangular, P1 0.999 0.0467 0.14% 0.988

Table 2.1: Results of the total flux linear regression

flux value, presupposing a linear convergence in relation to element size. To forecast the
precise solution, Qextra, one only requires two distinct, yet adequately fine element sizes,
h1 and h2.

Q1 = Qextra + bh1

Q2 = Qextra + bh2

}
=⇒ Qextra =

Q1h2 −Q2h1

h2 − h1
(2.66)

Using this approach, and taking advantage of the integrated flux values. The extrap-
olated results are presented in Table. 2.2, computed two element sizes with the smallest
mesh size h1/r0 = 0.1 and h2/r0 = 0.125, corresponding to those depicted in Fig. 2.22.

Model
P

0
P

1

Tri Quad Tri Quad
|Qextra−Q◦|

Q◦ 0.031% 0.26% 0.058% 0.12%

Table 2.2: Results of Richardson’s extrapolation for the total flux

The results in Table. 2.2, appear more accurate than the ones proposed in Table 2.1,
demonstrating the consistency of the method. Ultimately the triangular model with
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constant interpolation provides the most precise result, in spite of its relative simplicity
in comparison with the others.

2.3 Fast-BEM

The previous section prompted the development of classical BEM tailored for the conduc-
tion problem. It further introduced the validation of our integration techniques’ precision.
The resolution pertaining to the circular spot ultimately assess of the numerical perfor-
mance of this model.

However, it has been pointed out that the matrix [G] is fully-populated. It arises
subsequent challenges in terms of numerical precision, memory requirement, and com-
putational complexity. As the number of elements increases - thereby enlarging the matrix
dimensions - numerical complexity emerges as a substantial constraint, scaling with the
order of O(N2) for the evaluation of the matrix components.

To address these challenges, various methods have been developed, initiated by the
Fast Multipole Method (FMM), which then enables the development of low-rank approxi-
mations. By combining these low-rank approximations with the concept of hierarchical
matrices, the overall complexity of BEM can be significantly reduced toO(N log(N)). This
reduction in complexity allows much more efficient and still accurate simulations, deal-
ing with a larger number of elements, thus enhancing the practicality and feasibility of
BEM for tackling realistic problems.

2.3.1 Approximation construction

The Fast-BEM, as introduced, is develop to speed up the computation of the matrix [G],
introduced in Eq. (2.50), by dividing it into sub-blocks and approximating some of them.
The current version of the Fast-BEM draws inspiration from the FFM, which is prescribed
by asymptotical smoothness property of the kernel function [Börm et al., 2003].

Definition: Asymptotic smoothness

A function f : DX × DY → R is asymptotically smooth when exists such constants
c1, c2 > 0 and s ∈N so that for any index n ∈N∗+

|∂n
y f (x, y)| ≤ c1n!cn

2 |x − y|−n−s (2.67)

Where s represents the degree of singularity of the kernel function.

In the context of BEM, the function f stands for the Green function, underlying
s = 1 as degree of singularity. This condition yields the definition of panel cluster-
ing [Hackbusch and Nowak, 1989]. The matrix [G] is thus divided in sub-blocks, ar-
ranging the sub-block space around clusters of elements that satisfy the condition of
admissibility [Grasedyck and Hackbusch, 2003]. All these notions will be introduced in
detail in this section.

This section aims to present various approximation techniques that leverage the prop-
erty of asymptotic smoothness. An example of multipole expansion is applied to a problem
of potential computation. Subsequently it will serve to delineate various techniques of
approximation within the context of Fast-BEM development. It will be then followed by
an assessment of their performance.

Application to the computation of potential

In the pioneering work by Rokhlin [Greengard and Rokhlin, 1987, Rokhlin, 1985], a fast
version of computation of potential field for particles relies on the computation of multipole
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expansion. This case study considers a system where particles are subject to pairwise
interactions, be they electrostatic or gravitational. For a system comprising N particles,
the potential U acting on any given particle is the aggregate of potentials from all other
particles. This potential is characterized by the scalar function Φ.

U(xi) =
N∑
j,i

Φ(xi, x j)

Φ(xi, x j) =
mim j

ri, j
=

mim j

∥xi − x j∥

With xi is the position of the i-th particle, and mi represents its mass. In that case, we
assume gravitational interaction, with gravity constant G = 1.

Cluster definition

As an example, we might consider two different clusters, in which the particles are
sparsely distributed. This example can be illustrated in Fig. 2.23. The weights are
randomly defined, prescribed by a truncated normal distribution. The positions of those
particles are as well randomly distributed within the cluster space. The particles are
presented by color dots, colored accordingly to the potential of the particle.

C1 C2

X1
i X̃

1

X̃2X2
j

X̃1 X̃2
R

X1
iX

2
j

8.55 19.02 29.49 39.97 50.44

U

Figure 2.23: Potential for particles sparcely distributed within two clusters

Sub-block matrix approximation Two sets of particle position might be defined {x ∈
C

1
} = {x1

}, and {x ∈ C2
} = {x2

}. The latter potential formula can be reformulated using a
linear system, as follows.

(
[U(x1)]
[U(x2)]

)
=

(
M11 M12

M21 M22

)
.


1
...
1

 , Mi j = Φ(xi, x j)

The matrix of potential interaction is parceled out in sub-blocks, following the two clusters
set, {x1

}, {x2
}. The multipole expansion aims to approximate the interaction between two
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sets of particles well-separated. This appeals to focus on extra-diagonal sub-blocks, M12,
and M21. As the potential function is symmetric, the sub-blocks are in turn symmetric,

like M21 =
(
M12

)T
. This example will solely concern the approximation of the sub-block

M12.
Considering the sub-block M12, the set of observation point is represented by the sub-

space {x1
}, while {x2

} is analogous to the set of integration element. The length of those
two sets are denoted by m and n, for {x1

}, and {x2
}, respectively. The multipole expansion

relies on the vector decomposition of the distance vector, as presented in Fig. 2.23, like

x1
i x2

j = x1
i x̃1 + x̃1x̃2 + x̃2x2

j

With the indexes i ∈ [1,n] and j ∈ [1,m], as M12
i j = (mim j)/|x1

i x2
j |. The points x̃1 and x̃2

represent the coordinate of the centroid point of the clusters C1 and C2.
The multipole expansion relies on a separation of variables, which is developed as a

Taylor-type expression. The number of derived functions involved gives the order of the
multipole expansion. The separation of variables could be developed as the product
function below,

M12
i, j = Φ(x1

i , x
2
j ) ≈ f (x1

i , x̃
1)g(|x̃1

− x̃2
|)h(x̃2, x2

j )

Where R is distance by the centroids points, as R = |x̃1−x̃2|, for which is derived the Taylor-
type expansion. This might be summarized in a matrix system, illustrated in Fig. 2.24.
This diagram accounts for a multipole expansion at the thrid degree. The sub-blocks
in the matrices are of variable shapes, related to the dimension of the problem. For the
latter example, the geometrical dimension is equal to two; the difference (xi − x̄1) is still
of dimension two, and (xi − x̄1)2 might be composed of three components for instance.
However the series of derivatives ∇ng(R) is still scalar, but might be multiplied to the
right components in the other sub-blocks to return a vectorial component defined in the
original geometrical coordinate system.

M ≈













...
mi
...

...
mi(Xi − X̄1)

...

...

mi(Xi − X̄1)
2

...







g(R) ∇g(R) 1
2 ∇2g(R)

∇g(R) ∇2g(R) 1
2 ∇3g(R)

1
2 ∇2g 1

2 ∇3g(R) 1
4 ∇4g(R)







. . . m j . . .

. . . m j(X̄2 −X j) . . .

. . . m j(X̄2 −X j)
2 . . .

Figure 2.24: Diagram representing the FMM construction with a product of column and
line vector matrices

Initially, the matrix M12 accounts for (m × n) coefficients. At variance, the multipole
expansion takes into account p multipoles. Given that p ≪ min (n,m), the quantity of
coefficients calculated and stored can be substantially decreased to (m.p + p.p + p.n) ≈
(m + n).p. The asymptotic smoothness assumption relies on the error regulation entailed
by the multipole expansion, thereby ensuring numerical stability. The error diminishes
as the number of modes p increases.

The formulation of multipole expansions can entail complex analytical development;
however, this subject benefits from an extensive literature, offering numerous prac-
tical examples in fields such as gravitational astronomy [Binney and Tremaine, 2011,
Blanchet, 1998], wave propagation [Devaney and Wolf, 1974, Thorne, 1953], radiation
problems [Bouwkamp and Casimir, 1954], and even quantum mechanics [Fiutak, 1963].
Detailed expressions for functions f , g, and h are elaborated upon in the appendix.

The FMM was initially developed
in the late 1980s [Rokhlin, 1985] [Greengard and Rokhlin, 1987] for calculating particle
potential fields, and later extended to electromagnetic issues [Engheta et al., 1992], Lapla-
cian problems [Greengard and Rokhlin, 1997], and issues governed by boundary integral
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equations [Liu, 2009], benefiting from the advancements in multipole expansion. Ulti-
mately, this method reduces computational costs from O(N2) to O(N log (N)).

Perspectives for BEM, Fast-BEM The BEM has reaped significant advantages from these
advancements in the late 1990s. To enhance flexibility and decrease computation time, the
FMM was replaced by low-rank approximations such as Adaptive Cross-Approximation
(ACA), which will be discussed in detail later.

In analogy to particle interactions, the concept requires the definition of well-separated
sets of elements, or clusters of elements. A blockwise structure can be developed using a
Hierarchical algorithm. This approach has contributed to the development of hierarchical
matrices, also known as H-matrices [Bebendorf, 2008].

Adaptive-Cross-Approximation (ACA)

According to the asymptotic smoothness property, there exists a low-rank approximation
for the sub-block matrix M12. Consequently, the rank of M̃12 is p, which is less than the
initial min(m,n), assuming that M12 is a full-rank matrix. The existence of such a low-rank
approximation matrix is further supported by the following theorem, as demonstrated
by [Goreinov et al., 1997].

Theorem: Existence of pseudoskeleton decomposition

Assume that (M, M̃) ∈ Rm×n, with R =M− M̃, rank(R) ≤ k and ∥R∥F ≤ ϵ for some ϵ > 0,
there exists a pseudo-skeloton decomposition, then there exists,

∥M − CGD∥F ≤ ϵ
(
1 + 2

√
p(
√

m +
√

n)
)

(2.68)

Where C ∈ Rm×k, G ∈ Rk×k and D ∈ Rk×n. Thus the sub-block approximation is defined
by the matrix product M̃ = CGD.

With ϵ represents an error coefficient in order of the prescribed rank p, and ∥•∥F stands
for the Frobenius norm. This theorem announces that it exists a subspace between the
set of point of observation σ, and the source point τ. The length dimension of these set
would be denoted by dim(σ) = m, and dim(τ) = n. This theorem is reported as well
in [Bebendorf, 2000], is used to demonstrate the existence of a low rank approximation
for BEM, based on the asymptotic smoothness property. The details of its demonstration
can be found in [Van Loan and Golub, 1996].

Adaptive-Cross-Approximation The Adaptive Cross-Approximation (ACA) is a class
of methods for constructing low-rank approximations without depending on analytic
multipole expansions, which differentiates it from the Fast Multipole Method (FMM).
Unlike FMM, ACA techniques do not require a priori knowledge of the kernel function,
allowing for greater flexibility. Several variations of the ACA method exists, each with
its unique process, but all utilize the sets σ and τ, as well as an error tolerance ϵ. These
methods incrementally search for pivotal elements, with coefficient values being approx-
imated in real-time. The iterative process continues until the error in the approximation
reaches the acceptable threshold determined by ϵ.

• ACA-full: This approach requires the knowledge of the entire sub-block matrix
for its operation, as presented by Bebendorf [Bebendorf, 2000]. It identifies the
pivot, which is the maximal coefficient in the matrix, and then updates the working
matrix by removing the corresponding row and column of the pivot. This step is
iteratively repeated until the stopping criteria is fulfilled. One of the key benefits
of ACA-full is its reliability. However, it is time-intensive since it necessitates the
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assembly of the full matrix before decomposition. It is analogous to the Singular
Value Decomposition (SVD) approach.

• ACA-partial: Contrary to ACA-full, ACA-partial [Bebendorf, 2003] does not require
the full matrix to be known beforehand, thus expediting the approximation process
by bypassing the full matrix assembly. The trade-off for this speed is a potential
decrease in accuracy due to possibly suboptimal pivot selection. To address this,
an enhanced version called ACA+ [Grasedyck, 2005] has been developed, which
employs a more robust pivot search mechanism to improve reliability.

These techniques are part of a broader, that also includes method
such as Nested-ACA, as referenced in the literature [Bebendorf and Venn, 2012,
Gujjula and Ambikasaran, 2022]. The Nested-ACA differs from the ACA variants by
constructing the low-rank approximation components through a nested basis, and it is
not heuristic in nature. Furthermore, there are proofs available that guarantee its conver-
gence, although it remains an algebraic method at its core.

ACA-full

Let us apply this method on the approximation of the sub-block matrix M. The approx-
imation of this sub-block is supposed to be built on fly. The approximation at the kth

iteration is denoted by M̃k, and Rk represents the residual matrix at this stage. These
expressions are illustrated by the equations below.

τ

σ

ire f

jre f

M

δ













a1

A1

= mi, jre f

×
( )

b1

=
mire f , j

δ

B1

, M̃1 =

Figure 2.25: Diagram illustrating the approximation built by ACA-full at the first step

The detailed procedure is elaborated in the Appendix B.5.1, initiating with a search
for the optimal global pivot. Upon identifying this pivot, indicated as δ, we document its
precise location within the matrix by its row and column indices. The row and column
associated with δ are preserved as matrix vectors, denoted by A and B respectively.
Subsequently, we compute the outer product of A and B and deduce this from the original
matrix M to yield the residual matrix, denoted by R1 — this signifies the completion of
the first iteration, with k = 1 at this point. This process is illustrate in Fig. 2.25 for the first
iteration, k = 1.

This iterative method continues on the residual matrix Rk at each subsequent kth step,
as illustrated for the second stage in Fig. 2.26. With every iteration, a new pivot is selected,
and corresponding new vectors are added to the A and B matrices. This iterative process is
maintained until the predetermined stopping criteria are fulfilled. Noticeably if the pivot
found is equal to 0, the approximated matrix is perfectly equal to M, and the process is
stopped as well. The stop condition is defined in terms of the norm of the residual matrix
as

∥Rk
∥F = ∥M −Mk

∥F ≤ ϵ∥M∥F
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M− M̃1 = = R1

i2re f

j2
re f

δ













a1 a2

A2

×






b1

b2

B2

M̃2 =

Figure 2.26: Diagram illustrating the approximation built by ACA-full for a matrix with
a rank of 2

The algorithm might be evaluated in terms of its complexity. The Table 2.3 accounts
for the computational cost of all steps. As the Frobenius norm accounts for the square root
of the cumulative sum of all squared coefficients, thus the number of operation is linear to
the number of coefficient , m × n. The pivot search, the residual matrix computation and
the residual error, are all again proportional to the number of coefficients, and repeated
at each iteration, thus k times.

Step Complexity

Initial norm, ∥M∥F O(m × n)
Pivot search, δ O(m × n)

 × k iterationResidual matrix, Rk
O(m × n)

Residual error, ∥Rk
∥F O(m × n)

Table 2.3: Order of operation for the different step of ACA-full

The computational cost of the process is about O(k.m.n + m.n). The complexity is
contingent on the dimensions of the matrix M, and multiplied by the required number of
iterations k, which might appear as a severe drawback. The final memory cost decreases
to an order of O (k.(m + n)), compared to the initial O(n.m).

ACA+

In the last algorithm, all operations are completed on the whole matrix, increasing the
complexity. The algorithm ACA+ aims to improve the complexity, shortcutting the work
on the whole matrix, and its complete assembly. Differing from ACA-full, the sub-block
matrix M is partially ignored. The pivot search could not span the entire matrix. A first
line lre f and a first column cre f of the matrix are chosen and computed, as illustrated in
Fig. 2.27. The pivot, δ∗, is then identified as the maximal value located on these reference
line and column, acknowledging that δ∗ might not be the absolute maximum of the
whole matrix. Its position is recorded as (i∗, j∗), and is next searched on this line and
column, which is denoted by δ∗, at the position i∗ and j∗. Similarly to the ACA-full, each
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iteration results in the addition of a new column and line vector to the matrices A, and,
B, respectively.

lre f

cre f

i1

j1

δ1













a1

A1
= mi, j1

×
( )

b1

=
mi1 , j

δB1

, M̃1 =

Figure 2.27: Diagram illustrating the approximation built by ACA-plus first the first stage

lre f

cre f

i1

j1

i2

j2

R̃1 =

Pc = [ j1]

Pl = [i1]







δ2







a1 a2

A2

×






b1

b2

B1

M̃2 =

Figure 2.28: Diagram illustrating the approximation built by ACA-plus for a matrix with
a rank of 2

The pivot search continues, resulting in an iterative process. A second step of the
ACA-plus aims to be illustrated in Fig. 2.28. All indexes that were explored, are save in
variables Pl and Pc, respectively for the row and column indexes. The indexes of reference
are kept as long as the pivot do not coincide with ire f or jre f . When the pivot coincides with
the index ire f in row position or with jre f in column position, the elements of reference are
changed. Those elements of reference enables to explore the whole matrix; the algorithm
increases its robustness against zero sub-part in the matrix, which may introduce some
instabilities.

The residual of the matrix needs to be adapted due to its partial knowledge. The
whole matrix M is replaced by the incremented matrix M̃k+1.

∥M − M̃∥F ≤ ϵ∥M∥F

⇒ ∥R̃k+1
∥F ≤ ϵ∥M̃k+1

∥F (2.69)
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with R̃k the a-priori residual matrix, that is expressed as the difference between the
matrices M̃k+1 and M̃k.

R̃k+1 = M̃k+1
− M̃k

The left-hand side in the expression Eq. (2.69), the coefficients of residual matrix is de-
veloped using line-column matrix product formula. This leads to the next simplified
expression for R̃k+1, as

R̃k+1
i, j =

k+1∑
p=1

ap
i bp

j −

k∑
p=1

ap
i bp

j = ak+1
i bk+1

j

Notably it follows the norm of the residual matrix,

∥R̃k+1
∥

2
F =

m∑
i=1

(ak+1
i )

2
n∑

j=1

(bk+1
j )

2

⇒ ∥R̃k+1
∥

2
F = ∥a

k+1
∥

2
∥bk+1

∥
2

(2.70)

This formulation for the residual matrix error allows us to separate the norm according
to two single vector error. Thus its computation just involves m + n operations.

The term ∥M̃k+1
∥F on the right-hand side in Eq. (2.69), requires a complete development

of M̃k+1 as presented below. It starts with the separation of the coefficients until k, from
the last column and line vector at k+1 position. It reveals the term ∥M̃k

∥F and the residual
norm ∥R̃k+1

∥F. Thus, this norm can be incremented by the kth stage.

∥M̃k+1
∥F =

∑
i, j

 k+1∑
p=1

ap
i bp

j


2

⇔ ∥M̃k+1
∥F =

∑
i, j


 k∑

p=1

ap
i bp

j


2

+
(
ak+1

i bk+1
j

)2
+ 2(ak+1

i bk+1
j )

k∑
p

ap
i bp

j


⇔ ∥M̃k+1

∥F = ∥M̃k
∥ + ∥R̃k+1

∥F + 2
∑

i, j

k∑
p=1

ap
i ak+1

i bp
j b

k+1
j

∥M̃k+1
∥F = ∥M̃k

∥F + ∥R̃k+1
∥F + 2

(
Ak.(ak+1)

T
)
.
(
Bp.(bp+1)

T
)

(2.71)

The last term on the right hand side can not be further simplified, but could be expressed
as a matrix product between the matrices Ak, Bk, and respectively the vectors ak+1 and bk+1.
The norm ∥M̃k+1

∥F computation is incremented by the residual error, and supplemented
by the last term of matrix product. This last part has the highest asymptotic complexity.
At every iteration, it counts about k(m + n) operations. All the orders of number of
operation are summarized in Table 2.4.

The complexity order is brought toO(k2(m+n)+ k(m+n)). But the integration in pivot
search is prevailing, that accounts for the computation of coefficients in the line l∗, and the
column c∗. The time requirement grows as a law of O(k(m+ n)), as long as k≪ min (m,n).

Example

In the context of the potential problem, we recall the problem of computation M12, which
relates to the computation of potential interaction between the cluster C1 and C2. In this
particular example, the source point set comprises σ = {x1

}, while the target point set
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Step Complexity

Value of reference, cre f , lre f , ire f , jre f O(m + n)
Pivot search, δ∗, i∗, j∗ O(m + n)

 × k iterationResidual error, ∥R̃k+1
∥F O(m + n)

Matrix norm, ∥M̃k+1
∥F O(k(m + n))

Table 2.4: Order of operation for the different step of ACA+

consists of τ = {x2
}, each with respective lengths of n = 20 and m = 25. The errors in the

coefficients’ results are presented Fig. 2.29 within the framework of FMM, ACA-full and
ACA+. All these approximations utilize the same number of modes, which is limited to
k = 6 iterations.

0 25

0

20

etot = 1.5%

FMM

0 25

0

20

etot = 0.07%

ACA-full

0 25

0

20

etot = 0.28%

ACA+

0 0.25 0.5 0.75

e = |M − M̃6|/M

Figure 2.29: Error in matrix coefficient with approximation for FMM (left), ACA-full
(center) and ACA+ (right)

In Fig. 2.29, the relative errors of the coefficients are depicted in reddish colors. The
total error, etot, on the matrix encompasses the cumulative relative errors across all coef-
ficients, a

In practical applications, an iterative low-rank approximation employs a termination
condition based on error criteria, related to a coefficient of error ϵ, conversely to FMM. This
latter requires analytical developments for each subsequent mode. In this example, both
ACA+ and ACA-full demonstrate their value, achieving total errors of 0.07% and 0.28%,
respectively, which are lower than the error induced by FMM, approximately 1.5% in
this case. Regarding the low-rank approximation, certain lines and columns exhibit error
values of zero. These correspond to the pivot row and column indices fully computed or
stored within the matrices A and B. This results in the exact values for those coefficients.

2.3.2 Error in function of the rank

The relationship between the rank number k and the error coefficient ϵ can be expressed
as follows: k ∼ log (ϵ). Fig. 2.30 represents the error associated with the approximated
matrix for the sub-block M12 for an increasing number of modes k. Additionally, we
present the results obtained from Singular Value Decomposition (SVD), taking only k first
singular values. This latter is parallel to the ACA-full, and is known to offer a low-
rank approximation that provides the best achievable approximation while minimizing
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the rank number, as described in [Van Loan and Golub, 1996], however it is the most
computationally expensive truncated at k.
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Figure 2.30: Residual error for in function of the number of mode the different low-rank
approximation

Two types of errors are computed for the ACA+method. The orange line represents the
actual error, which is calculated by comparing the entire matrix M with the approximated
M̃k. Meanwhile, the red line corresponds to the residual error, i.e ∥M̃k+1

− M̃k
∥F, given

by Eq. (2.70), which is actually employed in practice for the ACA+method. The red line
is expectedly lower than the true error in orange line. This discrepancy could lead to
misleadings in error measurements. At the same time, the actual error values produced
by the ACA+ method are higher than the others, underestimating the number of modes
really needed to reach the error command.

Nonetheless, the error for the ACA+ method decreases as the number of modes
increases, similar to the behavior of the others. Considering that the sub-block is non-
deprecated, its rank would be equal to min (m,n). At this rank, a persistent error equiv-
alent to the floating error remains, entailed by the matrix product operation. Comparing
with the SVD method, which is akin to ACA-full and requires the knowledge of the entire
matrix, despite having a higher error and uncertain convergence, we opt for the ACA+
application. In practical applications, it allows us to speed up the integration process. For
the memory optimization we may still employ the SVD method on the top of the matrix
obtained by ACA+, as employed by [Grasedyck, 2005]. This approach will be discussed
further in the section dedicated to optimization.

2.3.3 H-matrix

In the previous section, we delved into the development and the assessment of the
low-rank approximation. This allows to shortcut the construction of the whole matrix
and support the development of the Fast-BEM. The potential function Φ is replaced
by the Green’s function integrated on the boundary element. The expansion of this
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approximation to a continuous boundary element mesh hinges on our ability to define
consistent clusters of elements. The integration process must be preceded by the cluster
construction of mesh element. These steps are carried out hierarchically to preserve a
certain level of geometrical coherence, ultimately leading to the definition ofH-matrices.

This section aims to introduce the specific structures of these matrices. Their con-
struction starts with the definition of clusters and the hierarchical tree. We will then
present the admissibility condition, initially rooted in the asymptotic smoothness property.
Subsequently, we will explore clustering techniques in the context of their geometrical
consistency and the resulting numerical performance implications.

Admissible condition

First, the establishment of a blockwise structure is essential for defining the H-matrix.
The subspaces defining the row and column indices are closely tied to the clusters within
the mesh. This necessitates a reinterpretation of the well-separating condition inherent in
the asymptotic smoothness property. As illustrated in Fig. 2.23, considering two clusters,
C

1 and C2, a criterion woud rely on the size of the clusters, and the distances between
those. It yields the definition of the so-called condition of admissibility [Bebendorf, 2008].

Definition: Condition of admissibility

Two clusters of element C1 and C2, separated by a distance dist(C1,C2), and of specific
dimensions diam(C1), diam(C2) respectively, are considered admissible for reduction,
when the following condition is fulfilled :

max
(
diam(C1), diam(C2)

)
≤ η dist(C1,C2), η ∈ R+ (2.72)

Where η is the coefficient controlling the admissibility.

From a theoretical point of view, based on the asymptotic smoothness property, the
value of η is bounded by the constant c2 found in Eq. (2.67). Thus for kernel function
defines with Green function, η ≤ 1, which appears very restrictive. In practice, higher
values would return similar results, leading to better rate of compression as experimented
by [Grasedyck, 2005].

An example of mesh is presented Fig. 2.31, for two definition of the distance
dist(C1,C2), diam(C1), and the cluster size of diam(C2). The example is made up of a
mesh of a rather elliptical surface, Ω, and two arbitrary clusters, C1 and C2.

dist(C1, C2)

diam(C1)

C1

diam(C2)

C2

Ω

(a)

distbox(C1, C2)

diambox(C1)

C1

diambox(C2)

C2

Ω

(b)

Figure 2.31: Example of admissibility condition with circles definition (a), and boxes (b)
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Hence, Fig. 2.31 presents two potential definitions of the admissibility condition,
distinguishing by both their separative distances and their cluster dimensions. In sub-
figure (a) the diam(C1,C2) is computed as a circle circumscribed around the domain.
However, this definition represents an intensive problem for computation. The travel
along all the configurations results in a complexity order of N(N − 1)(N − 2)/6 for N
nodes. Moreover, it demands the verification of distances between every pair of mesh
contour nodes, spanning from one cluster to another. In contrast, the box metrics shown
in sub-figure (b) offers a streamlined interpretation of these parameters, making them
more computationally affordable. The diameter is defined through a circumscribed box,
which entails calculating the difference between maximum and minimum coordinates in
each direction. Once these coordinates are determined, the separation distance can be
directly inferred. These two parameters can be expressed as follows.

diambox(Cl) =
2∑

i=1

(
min(xl

i) max(xl
i)
)2

(2.73a)

distbox(Cl,Cm)2 =

2∑
i=1

{

(
max(0,max(xl

i) −min(xm
i ))

)2
+

(
max (0,max(xm

i ) −min(xl
i))

)2
}

(2.73b)
The admissibility condition can effectively incorporate these parameters since the con-

dition based on the box definition is more stringent. This difference could be adjusted
with the parameter η as well. The boxes’ separation distance is smaller, while their diago-
nals are longer than the real cluster radii. Consequently, the two sides of the admissibility
condition expression are brought closer together, rendering it more challenging to satisfy.
Furthermore, establishing the minimum and maximum values within an array of length
N follows a linear complexity of O(N). This results in a less computationally expensive
process while maintaining the integrity of the admissibility condition.

Cluster definition

The definition of clusters is dedicated to the optimization of time integration and mem-
ory requirements. The ideal cluster is one that can accommodate the largest admissible
clusters, and in meantime can conduct to the lowest rank in low-rank approximation.
However, if these clusters do not meet the condition of admissibility, we may subdivide
them, potentially reducing their size and dimension in an attempt to satisfy the admis-
sibility condition. This is at the core of the definition of hierarchical procedure. This
hierarchical approach enables the creation of a consistent structure for the admissibility
condition and, consequently, for the approximation. This cluster definition inherits from
the hierarchical structure, which is represented by an H-tree. This tree serves as a sum-
mary of how clusters are interconnected and defines the inheritance relationships among
them. An example of anH-tree is presented below, in which clusters are denoted as C(l)

i ,
with the index i, at the hierarchical level l.

C
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In this instance, all clusters stem from a single root cluster, denoted asC(1)
1 . Progressing

to the next level, the root divides into two branches, each resulting in one node. This
identical process iterates until we reach the final level, where these nodes are also referred
to as leaves. At all levels, there exist 2l−1 nodes, with i ∈ ⟦1, 2l−1⟧. The maximum level in
theH-tree, denoted as lm, is referred to the tree depth, entailing l ≤ lm.

We will assume an identical practice of splitting each node into two. Notably, the
number of elements in the cluster defined at a same level may vary. If the stopping
condition is defined in terms of a minimal number of elements at the bottom, this could
results to an unbalanced tree, characterized by uneven depths along different paths. In
fact the stopping condition could appear later, along a branch encompassing cluster with
larger number of element. To avoid this problem, and enhance the navigability in the
H-tree, we decided to define the stopping condition rather in term of a maximal depth.

Method: Stopping condition

The stopping condition relies on a maximal depth lm. When this depth is reached,
the splitting process will stop. Notably, for all nodes C(l)

i , with l + 1 ≤ lm, consistently

gives rise to two clusters, C(l+1)
2i−1 and C(l+1)

2i , at the subsequent level. The indexing
remains standardized as long as the same depth is maintained across all paths within
theH-tree.

Ultimately, various methods can be employed to define clusters. Some are specifically
tailored for hierarchical splitting, such as the median and geometric separation methods,
while others can be applied globally, like the K-means method. Although similar, they
may yield different leaf characteristics in terms of size and the number of elements.

Direction of separation The underlying idea of the cluster definition is related to the
panel clustering [Hackbusch and Nowak, 1989]. Two splitting procedures are commonly
presented, namely median and geometric [Grasedyck and Hackbusch, 2003]. They consist
in splitting a set of mesh element in two sets, along a specific direction. They both rely
on the definition of extremum coordinate along each direction in the cluster C(l)

i , which
subsequently informs the determination of the length di in a given direction i.

Method: Direction of separation

For a given cluster of elements C(l)
i , different distance d along each dimensional direc-

tion, which is equal to the maximal difference between coordinates, as :

.d j = max(x j) −min(x j), with x ∈ C(l)
i (2.74)

The direction chosen for the cluster separation, denoted as is, might inherently derive
from this set of distance. The direction of separation is choosen as direction related to
the maximal distance, :

is = argmax
i

(di) (2.75)

This selection aims to achieve the most significant reduction in size.

The length definition is presented in Fig. 2.32, for an imaginary clusterC(l)
i . This exam-

ple is depicted in two-dimensional case, although readily extendable to three-dimensional
case. With d1 > d2, the direction of separation is is = 1.

Nevertheless, it is noteworthy that the orientation of the geometry within an absolute
coordinate framework influences the measurement of the distances, and the chose of axis
for splitting in turn. The identical mesh geometry, but inclined at an angle of π/4 is
presented in Fig. 2.33. Consequently the direction of seperation is changing, the splitting
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d1

d2

C(l)
i

Figure 2.32: Example of distance lengths computation for a cluster of element

will not be the same. Potentially one might use instead a direction of separation aligning
with the maximum node-to-node axis. However it leads to a higher complexity and thus
to higher computational efforts.

d1

d2
dmax

C(l)
i

Figure 2.33: Definitions of box dimension and maximal distance of mesh with a modified
orientation

Median seperation After establishing the axis of separation, the elements can be par-
titioned along the is axis. The median separation relies on the definition of the median
position based on the amount of mesh elements. This arises to the definition of cluster
with identical number of element, or at most, a difference of one element if the original
quantity of elements is an odd number. The categorization of the elements is based on
the centroid location along the is axis, denoted by x̄is . The threshold for dividing the two
clusters is determined by the median of these coordinates. This is articulated below and
represented by xmed.
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xmed = median(x̄is), with x ∈ Ω (2.76)

This criterion prevails the consistency in terms of number of elements, among the
different cluster at a certain level along theH-tree. However, their geometric sizes might
be different, exacerbated for mesh with local refinement.

Algorithm 3: Algorithm for median separation

1 Function MedianSplit (C):
2 is ← Is (C)
3 C

1,C2
← XMedian (C, is)

4 return C1, C2

An example of the median separation is presented in Fig. 2.34. In these examples, the
median separation helps to divide the initial cluster C(l)

i into two clusters C(l+1)
2i−1 and C(l+1)

2i .
The contrast in these two mesh clustering highlights the possible impact of orientation
and the resulting non-uniqueness of such a separation.

xmed

C(l+1)
2i

Ne = 11
C(l+1)

2i−1
Ne = 12

ymed

C(l+1)
2i

Ne = 11

C(l+1)
2i−1

Ne = 12

Figure 2.34: Examples of median separation for the same mesh differently oriented

Geometric separation Conversely, the geometric separation emerges as a criterion more
rooted in geometry. It also establishes a boundary for dividing two clusters along the
principal axis is. The geometric boundary, denoted by xgeo, is the midpoint of the encom-
passing box, which is defined as follows.

xgeo =
1
2
(
max(xis) +min(xis)

)
, with x ∈ Ω (2.77)

An application of this geometrical separation is presented in Fig. 2.35 taking back the
same mesh geometry already studied for the median separation.

As announced, this criteria yields clusters that are not equal in number of element, but
are more uniform in size. The two clusters created get 10 and 13 elements, respectively,
each differing by 1 element from the clusters formed by the median separation. Once
more, the definition of the clusters is contingent on the absolute position of the elements,
thereby varying with the mesh’s orientation.

Possible enhancements The two aforementioned criteria provide a straightforward and
cost-effective method for cluster definition. Yet, it has been observed that these criteria are
dependent on the coordinate system. Adopting the maximal distance as the separation
direction, defined as dmax in Fig. 2.33, avoids any bias, and provides an absolute direction
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xgeo

C(l+1)
2i

Ne = 10

C(l+1)
2i−1

Ne = 13

ygeo

C(l+1)
2i

Ne = 10

C(l+1)
2i−1

Ne = 13

Figure 2.35: Examples of geometric separation for the same mesh differently oriented

for the cluster separation. Its application is presented in Fig. 2.36, using then the median
separation criteria to target equal amount of mesh elements.

C(l+1)
2i

Ne = 11

C(l+1)
2i−1

Ne = 12

Figure 2.36: Example of median separation along the largest distance axis

Instead of specifying this maximal direction, the clusters might be defined employing
K-Means algorithm as introduced by [MacQueen, 1967]. This method allows to make
comparison with non-hierarchical cluster definitions. Clustering could be applied on the
entire mesh boundary, instead of dividing it by increment and potentially accumulating
bias. Subsequently, the H-tree could be restructured by uniting the closest clusters in
pairs, thereby elevating the hierarchy level. The clusters thus established are independent
of orientation and preserve geometric consistency.

Algorithm The construction of theH-tree, is encompassed with the construction of the
list-object like CH, as presented in Algorithm 4. This object CH is implemented on fly
by the function Hcluster, defined by recursive procedure. The inner variable l defines
the current level in the H-tree, of the input cluster C. When level reaches the depth lm,
the recursive procedure stops. Conversely, for l < lm, the cluster C is separated in two,
employing the function Split. The procedure continues to the next level, with C1, and
C

2 , those are the two clusters returned. The separation is linked to the definition of the
function Split.
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Algorithm 4: Algorithm forH-cluster

1 CH = [[] for i in range(lm)]
2 Function Hcluster (C, CH , l):
3 CH [l].append( C )
4 if l == lm then
5 return CH
6 C

1,C2
← Split (C)

7 CH ← Hcluster (C1, CH , l + 1)
8 CH ← Hcluster (C2, CH , l + 1)
9 return CH

Results on a mesh of a circular spot Illustrations of H-clustering are presented in
Figs. 2.37, 2.38, 2.39, and 2.40, showcasing a circular mesh comprising Ne = 2984 elements.
This mesh is refined on its edge. The resulting clusters obtained from different tree depths
lm = {4, 5, 6}.

Utilizing the median method, the clusters at the maximal depth vary in size but
maintain an equal number of elements. In contrast, the geometric approach tends to
create a uniform grid across the mesh. It is evident that the central clusters comprise fewer
elements compared to those at the periphery. The clusters in Fig. 2.39 appear broader
at the center, resembling a pie being sliced into segments. The likelihood of fulfilling
the admissibility condition for the cluster at the middle might be lower. Nevertheless,
the clusters on the edge are more isolated and smaller in size, more likely to fulfill the
condition of admissibility. Lastly, with the K-means clustering, the clusters appear tighter
and more rounded. This clustering method seems to strike a balance between geometric
and median divisions. Nevertheless, it does not seem to align well with the criteria for
admissibility.
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Figure 2.37: Clustering for a mesh of circular spot of Ne = 2984 elements for median
separation with (a) lm = 4, (b) lm = 5, (c) lm = 6

To assess the efficacy of the clustering methods, Fig. 2.41 reveals certain characteristics
for two meshes with circular contact spots. One mesh is made of Ne = 804 elements,
marked by circles, and the other has Ne = 2894 elements, denoted by crosses, the one
which was used for cluster maps in Fig. 2.37, 2.38. 2.39, and 2.40. The Fig. 2.41(a)
illustrates the largest different in the number of elements between two clusters, whereas
Fig. 2.41(b) represents the greatest difference in cluster size. The cluster size Dmin and Dmax
corresponds respectively to the minimal and the maximal dimension of the circumscribed
box among all the clusters. Clustering that employs the median split retains the attribute of
uniformity in the number of elements per cluster. The ratio Nmax/Nmin consistently equals
to 1. In contrast, this ratio increases with the depth lm for both the geometric and K-means
clustering, reaching approximately 18 and 15, respectively. Regarding the variation in
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Figure 2.38: Clustering for a mesh of circular spot of Ne = 2984 elements for geometric
separation with (a) lm = 4, (b) lm = 5, (c) lm = 6
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Figure 2.39: Clustering for a mesh of circular spot of Ne = 2984 elements for maximal
direction separation with (a) lm = 4, (b) lm = 5, (c) lm = 6
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Figure 2.40: Clustering for a mesh of circular spot of Ne = 2984 elements for K-means
clustering with (a) lm = 4, (b) lm = 5, (c) lm = 6

cluster size, the geometric split is comparatively more stable than the other methods.
Nonetheless, this trait might be less important within the context of approximation, than
the criteria in number of elements. Indeed, it is more crucial to maintain uniform cluster
sizes, aiming to get rank(M̃)≪ min(m,n), with M̃ a sub-block approximation.

2.3.4 Application of the approximations

Hierarchical admissibility

For an optimal approximation, the integration process is hierarchically structured as
well. When the clusters meet the condition of admissibility, the corresponding sub-block
might be approximated; if not, the process continues, incrementing the level to assess the
admissibility of the branch’s cluster pairs. This approach appeals to recursive algorithm,
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Figure 2.41: Performances of the clustering in function of the cluster depth

which relies on the assessment of cluster admissibility. At the final stage, when the
algorithm has deepened to the depth lm, the algorithm will simply reassess the condition
of admissibility between leaf nodes. A cluster in relation to itself will invariably be
inadmissible, similar to a cluster adjacent to another. For the non-admissible leafs, the
corresponding sub-blocks are completely computed, i.e. no low rank approximation is
used.

The methodology for constructing the H admissibility matrix is outlined in Algo-
rithm.5. It is presupposed that cluster construction has been completed in advance and
the details are retained in memory. The H-Admi function thus references these clusters
when invoked with C. The H-Admi function considers only the indices of the two clusters
under scrutiny, i and j, along with the level l, and the global parameter η which governs
the admissibility condition. The indices i, j, and l are utilized to retrieve the clusters C(l)

i

and C(l)
j . The η parameter is identical to the one in the Adm function, as delineated in Algo-

rithm.5. This function verifies the admissibility condition and returns Truewhen clusters
are admissible, or False if they are not. The functions d and size, compute the separa-
tive distance between clusters and their sizes, respectively. These functions rely on the
definition of the bounding boxes, as presented on the right side of Fig. 2.31.

The condition of admissibility is always assessed for cluster of an identical level l. At
the final level l = lm, the clusters are leaves; otherwise it is possible to get their nodes the
couples (C(l+1)

2i−1 ,C
(l+1)
2i ), and (C(l+1)

2 j−1 ,C
(l+1)
2 j ), for (C(l)

i , C(l)
j ) respectively. This constitutes 4 of

recursive calls to the next level. All recursive calls returnsH-matrix, or boolean variable
referring to the result of the condition of admissibility. Their structures are thus built
recursively.

Example Two examples of the condition of admissibility are presented in Fig. 2.42 giving
insights into the assessment of this condition and the influence of η. Non-admissible
clusters are shaded in white, while admissible ones are marked in green. The red cluster
signifies the cluster currently under consideration. This example is using the mesh of a
circular contact spot made of Ne = 2984 elements, established through median separation
at a tree depth of lm = 6. These maps are generated by validating the admissibility of
all clusters at each hierarchical level, commencing with the cluster indexed first. Should
the admissibility condition be satisfied between this initial cluster and another at a given
level, the cluster’s geometry is recorded and colored green; if not, investigation proceeds
to the subsequent level.
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Algorithm 5: Implementation of theH-admissibility
Data: η, lm, C, Global

1 Function Admi (l, i, j):
2 if max ( size (C(l)

i ), size (C(l)
j ), ) ≤ η d (C(l)

i , C(l)
j ) then

3 return True
4 end
5 return False
6 Function H-Admi (l, i, j):
7 if l == lm then
8 return True
9 end

10 H11 ← H-Admi (l + 1, 2i − 1, 2 j − 1)
11 H12 ← H-Admi (l + 1, 2i − 1, 2 j)
12 H21 ← H-Admi (l + 1, 2i, 2 j − 1)
13 H22 ← H-Admi (l + 1, 2i, 2 j)
14 return [[H11,H12], [H21,H22]]

(a) (b)

Figure 2.42: Examples of map of admissible (green) and non-admissible (blank) with
respect to the red cluster η = 1 (a) and η = 3 (b)

H-matrix of admissibility Examples of H-matrix of admissibility are represented in
Fig. 2.43, using the mesh geometry in Fig. 2.42. Two different values of η = 1, and 3 were
used. These matrices exhibit symmetry due to the symmetric nature of the admissibility
condition. Empty sub-blocks denote non-admissible clusters, in contrast to the green
sub-blocks, which signify admissibility. Non-admissible blocks invariably occur between
two leaf clusters. Diagonal sub-blocks are tinted red when a set of source points lies
within a set of integration elements. For all these diagonal coefficients, the integral is
inherently singular. The physical is presumed constant for the sake of simplicity.

As indicated by the maps in Fig. 2.42, the count of non-admissible clusters depends
on the η parameter. When η decreases, the condition of admissibility is more stringent,
necessitating a careful selection of this parameter to align with the anticipated numeri-
cal efficacy. The matrices presented in Fig. 2.43 provide an alternative visualization of
the interactions among clusters, akin to the maps in Fig. 2.42, and are designated as
H-Admissible Matrix. The maps presented in Fig. 2.42 can be inferred from the first row
or column of these matrices. The green sub-matrices correspond to BEM-sub-matrices
between clusters deemed admissible. As illustrated in Fig. 2.42 the condition of admissi-
bility can be established prior to reaching the leaf level, which results in larger sub-blocks.
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This results in the construction of larger sub-blocks than those of the last step. Thus all
the sub-blocks have not the same dimension referring to different level in theH-tree. In
the opposite white sub-blocks illustrate non-admissible cluster, while the red sub-blocks
along the diagonal depict self-interacting cluster segments, always found at the maximal
depth. Diagonal entries in these red matrices are associated with singular integrals when
the source point resides within the element.

For the recall, the nature of condition of admissibility is rooted in the interaction
kernel function. The sub-block deemed admissible relates to clusters relatively close to
each other. This leads to the rearrangement in the index of element.

Figure 2.43: Examples of H-matrix for admissible (green) and non-admissible (blank)
clusters with η = 1 (left) and η = 3 (right)

As we can see by those two examples, the number of sub-block which are admissible
decreases with the parameter η. This parameter also makes change the overall structure
of the H-Admissible matrix. Subsequently, we can define a rate of admissibility as the
cumulative number of coefficients in the admissible block NAdmi, related to the number of
coefficient in the fully populated matrix N2

e , as follows,

τAdmi =
NAdmi

N2
e

The rate of admissibility is presented in Fig. 2.44. This rate is displayed for different
values of η, and different depth of H-tree, lm. We consider again the two meshes of
circular contact spot, with 804, and 2894 elements.

As expected, the rate of admissibility increases with the parameter η, and with the
depth lm, i.e, the number of approximated coefficients increases with the rate of admissibil-
ity. Nevertheless, the rate of admissibility for the two meshes seems identical. Ultimately
the admissibility rate reaches a plateau at η = 3, for any depth lm, and across both meshes,
because we rapidly reach geometrically connected clusters for these particular examples.

H-approximation

The construction of H-Admi provides an approximation of the BEM matrix shaped as
H-matrix. The admissible sub-blocks are subject to approximation via one of the approxi-
mation methods, while the non-admissible sub-blocks undergo complete computation. A
range of approximation approaches was discussed in Section 2.3.1. For the advantages in
terms of reliability and time-saving, we have opted for the ACA+ technique. This section
delves into the problem of hierarchical approximation and aims to assess its efficiency in
terms of computer requirements.
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Figure 2.44: Rate of admissibility in function of η and lm

Algorithm The assembly of the approximation matrix leverages the implementation of
H-Admissibility, as detailed in Alg.6. This algorithm receives the H-tree level l, cluster
indices i and j, the parameter η, and the error parameter ϵ as inputs. It does not require
the preconstruction the H-Admi since it enables to assess the condition of admissibility
in the meantime.

The assembly of the approximation matrix can leverage the same foundations as
those used for the H-Admissibility, as detailed in Algorithm.6. This algorithm receives
the H-tree level l, cluster indices i and j, and the error threshold ϵ as inputs. It obviates
the necessity of preconstructing the H-Admi since the condition of admissibility can be
checked as well on fly during the integration process. During a recursive call, the level
parameter is incremented by 1. The clusters inherently explored, are referred with the
indices (2i − 1, 2i) for the cluster of observation point, and (2 j − 1, 2 j) for those of element
of integration. This accounts for 4 recursive calls in total. The returned H-matrices,
computed by H-Appro with these recursive calls, are then combined in Asup, Bsup, and
ksup, and return.

Rank Matrice The approximation of the sub-block appeals to the definition of a com-
pressibility ratio. This parameter might be defined as the ratio between the number of
computed coefficients, denoted by Nc and the total coefficient number in the sub-matrix,
n ×m. This compressibility ratio is defined for each sub-block.

τC = 1 −
NC

nm
, n = |C(l)

i |, m = |C(l)
j |

Or over the entire matrix,

τC = 1 −
NC

N2
e

(2.78)

The number of saved coefficients relates to the rank of a sub-block matrix, with
Nc = k(m + n). This compressibility ratio pertains to the memory-saving performance
allowed by the approximation. The higher the compressibility ratio is, the more effective
the approximation is in terms of memory. Some examples of compressibility ratio insight
are presented in Fig. 2.45, still using a mesh geometry built with Ne = 2984 elements, and
using the parameters η = 3 and lm = 6..
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Algorithm 6: Implementation of theH-approximation
Data: η, Global

1 Function H-Appro (l, i, j, ϵ):
2 if Admi (l, i, j) is True then
3 A,B, k← Aca+ (C(l)

i , C(l)
j , ϵ)

4 return A, B, k

5 else if l == lm∪ , Admi (l, i, j) is False then
6 m,n← |C(l)

i |, |C
(l)
j |

7 M(l)
i, j ← BEM-integ (C(l)

i , C(l)
j )

8 return M(l)
i, j, [], min (m,n)

9 A11,B11, k11 ← H-Appro (l + 1, 2i − 1, 2 j − 1, ϵ)
10 A12,B12, k12 ← H-Appro (l + 1, 2i − 1, 2 j, ϵ)
11 A21,B21, k21 ← H-Appro (l + 1, 2i, 2 j − 1, ϵ)
12 A22,B22, k22 ← H-Appro (l + 1, 2i, 2 j, ϵ)
13 Asup ← H-Sup (A11,A12,A21,A22)
14 Bsup ← H-Sup (B11,B12,B21,B22)
15 ksup ← H-Sup (k11, k12, k21, k22)
16 return Asup,Bsup, ksup

The structure of these H-matrices does not change with the error parameter ϵ. It
solely influences the ratio value in the admissible sub-blocks. The compressibility ratio
in each sub-block decreases as the error factor ϵ decreases. For example, for ϵ = 10−4, the
compressibility ratio is about 73.5%, while for ϵ = 10−6, it decreases to τc = 68.8%. In the
meantime, the compressibility ratio for the non-admissible sub-blocks is always equal to
0, not subjected to approximation.

Error in matrix The approximation will lead to error on coefficients. This yields the
definition of a global error rate, denoted by ϵtot, as follows,

ϵtot =
∥M − M̃∥F
∥M∥F

With M the reference matrix, and M̃ its approximation using ACA+ and sub-matrix
product. The reference BEM matrix was fully computed for this purpose. Some examples
are presented in Fig. 2.46 giving insight of the error for all components.

The total error decreases with the increasing error factor ϵ. It is noteworthy that the
total error is lower than ϵ prescribed in the left-hand side case, but higher for the right-
hand side matrix. This comes from the fact that the measure of the error is only known a
priori with the function ACA+, as detailed in algorithm.11 (in Appendix B.5.2), and that the
incremental error can differ from the real one, see Fig. 2.30. Despite this fact, the relative
error on each coefficient decreases in compliance with the parameter ϵ, uniformely over
the sub-blocks.

Performance of compressibility To assess of the performances review, related to the
approximation is conducted for the resolution of circular contact spot problem made of
Ne = 12208 elements. The outcomes are represented in Fig. 2.47, and reported in terms
of the rate of compressibility and the time of the integration, respectively on the left and
the right hand side, for different error factor ϵ and varying depth lm. The time factor is
defined as the ratio between the time for the construction of the approximation, and the
time reference initially needed for the full assembly of the matrix.
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ϵ = 10−4, τC = 73.5% ϵ = 10−6, τC = 68.8%

ϵ = 10−4, τC = 78.5% ϵ = 10−6, τC = 76.7%
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τC sub-block (%)

ACA+, construction

SVD-Optimized

1
Figure 2.45: H-matrices of rate of compressibility in sub-block using ACA method for a
mesh of circular contact spot composed of Ne = 2984 elements, using η = 3 and lm = 6

The compressibility rate of the hierarchical approximations decreases with the error
factor ϵ, as higher accuracy requires a larger number of modes. In the opposite, the rate of
compressibility is improved as the depth lm increases. The rate of compressibility seems to
converge to an upper bound when the prescribed error factor increases and also when the
depth increases. Different mesh sizes have been tested, the rate of compressibility does not
seem to depend on the number of element. However, as the rate of complexity is lowered
in the Fast-BEM implementation, the Fast-BEM would become more advantageous as
the size of the problem grows. The time parameter t/tre f increases proportionally to
log (ϵ), as the rank k ∼ log (ϵ). In addition by an increasing rate of compression, the
computer requirements is reduced. The Fast-BEM becomes advantageous in terms of time
integration, when Ne ≥ 10000. This limit is due to the subsequent operation that entails
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ε = 10−4 , εtot = 4.18.10−5 ε = 10−6 , εtot = 0.27.10−5

1.10−7 1.10−6 1.10−5 1.10−4 1.10−3 1.10−2

Relative error on coefficient

Figure 2.46: Matrix of relative error on coefficient of interaction using ACA process for a
mesh of circular contact spot composed of Ne = 2984 elements, using η = 3, with ϵ = 10−4

(left), and ϵ = 10−6 (right)
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Figure 2.47: Rate of compression and time for approximation in function of ϵ and depth
level lm for mesh of Ne = 12208 elements

the use ofH-matrix. In summary, theH-approximations enhance memory efficiency, but
the improvement of the time integration might be harder to notice for small problems.
The equilibrium between accuracy, memory, and computation time remains a crucial
consideration when selecting the appropriate approximation method for a given problem.
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Resulting error An additional error value might be defined, which relies on the defi-
nition on the overall flux emitted by the contact spot. This flux error, denoted as ϵJ, is
defined as the absolute difference between the flux resulting from the entire construction
of the matrix, with the flux yielding from the approximation denoted as J̃. We assume
constant interpolation within the normal flux field, as given by Eq. (2.64), the total flux
is given by the scalar product between the vector of normal flux solution, J, and the
area of the element A. Consequently, the error ϵJ can be expressed in the context of this
approximation, as follows:

ϵJ =
∥(J − J̃)A∥F
∥JA∥F

The error values measured on the approximated matrix, and on the flux results, are both
represented Fig. 2.48, as a function of the error factor ϵ used in ACA+. Those two errors
are computed over different values of depth, lm.
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Figure 2.48: Error on the matrix components (left), and on the result of flux (right) for
different error factor, ϵ and depth lm, for a mesh of circular contact spot composed of
Ne = 12208 elements

The errors are both exhibiting the same tendency with respect to the error factor ϵ.
This error factor appears to be an effective measure of the desired precision for both the
matrix and the flux. The error associated with the matrix approximation is found to be
lower than the ϵ parameter, but for ϵJ, it is higher to this latter, up to in a magnitude of one
order. Nevertheless its decrease is consistent with the behavior of the error parameter,
affecting both the matrix and flux results.

Optimization

As remarked in Section 2.3.1, the low-rank approximation does not provide the optimal
number of modes. However, this could be enhanced by employing in addition a Singular
Value Decomposition (SVD), which would enable a reduction in the number of modes
required. Additionally, the approximation and the construction of the H-matrix are
dependent on the form mandated by the admissibility condition. But its form could be
enhanced as well. Such modifications could lead to potential optimization in line with
the initial error parameter ϵ. An example of this approach is detailed in Algorithm 7, in
agreement with [Grasedyck, 2005, Bebendorf and Kunis, 2009].
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Algorithm 7: Implementation of theH-optimization

1 Function H-Opti (A, B, ϵ, k, i, j, l):
2 if B is empty then
3 return A, B, k, False

4 else if B is a matrix then
5 A′,B′, k′ ← SVD (A.B, ϵ)
6 return A′, B′, k′, True

7 A′11,B
′

11, k
′

11, adm′11 = H-Opti (A11, B11, k11, 2i − 1, 2 j − 1, l + 1)
8 A′12,B

′

12, k
′

12, adm′12 = H-Opti (A12, B12, k12, 2i − 1, 2 j, l + 1)
9 A′21,B

′

21, k
′

21, adm′21 = H-Opti (A21, B21, k21, 2i, 2 j − 1, l + 1)
10 A′22,B

′

22, k
′

22, adm′22 = H-Opti (A22, B22, k22, 2i, 2 j, l + 1)
11 A′sup ← H-Sup (A′11,A

′

12,A
′

21,A
′

22)
12 B′sup ← H-Sup (B′11,B

′

12,B
′

21,B
′

22)
13 k′sup ← H-Sup (k′11, k

′

12, k
′

21, k
′

22)
14 if Any (adm′11, adm′12, adm′21, adm′22) is False then
15 return A′sup,B′sup, k′sup, False

16 M′sup ← H-Sup (A′11.B
′

11,A
′

12.B
′

12,A
′

21.B
′

21,A
′

22.B
′

22)
17 A′′sup,B′′sup, k′′sup ← SVD (M′sup, ϵ)

18 else if k”(2)
sup < min (k′11 + k′12, k

′

21 + k′22) then
19 return A′′sup,B′′sup, k′′sup, True

20 return A′sup,B′sup, k′sup, False

Algorithm This optimization aims to modify the structure ofH-matrices A, B, and the
variable k. The algorithm solely accounts for the results of the already knownH-matrices
A, B. It takes into account the indices i, j, and the level l. It outputs optimized versions of
A, B, and k, and a fourth boolean variable, adm, which indicates the admissibility of the
sub-blocks.

Similarly to the previous algorithm, it features four recursive calls. If all branches
are deemed admissible, it attempts to synthesize the entire sub-block. If not, the existing
structure is preserved. As previously mentioned, Singular Value Decomposition (SVD)
is employed to decrease the rank of a sub-block within an admissible matrix, discarding
modes with an eigenvalue exceeding ϵ. Additionally, SVD may be applied to a collection
of admissible sub-blocks to further reduce the rank of the assembled sub-matrix.

Result of compressibility and error Examples of H-matrices optimized are displayed
in Fig. 2.45. The rate of compressibility initially of 73.5% for ϵ = 10−4, and of 68.8% for
ϵ = 10−6 are increased to 78.5% and 76.7%, respectively. The compressibility increases,
and the structure is improved, resulting in the assembly of admissible sub-blocks.

The error outcomes are also presented in Fig. 2.49. This study takes backs the last
case study presented in Fig. 2.46. The total error could be compared to the prior ones.
Initially, the approximation accounts for etot = 4.18 10−5, with ϵ = 10−4 and etot = 2.7 10−6,
with ϵ = 10−6, and after optimization those increase to 5.26 10−5 and 2.7 10−6, respectively.
Hopefully, the approximation does not seem to be deprecated in both case. The rate of
compressibility still accounts for the entire matrix number of components, as given by
Eq. (2.78).

Performances review Results in terms of rate of compressibility and time needed for
optimization are reported Fig. 2.50, employing two meshes Ne = {824, 2984} of a circular
contact spot, and different values of depth.
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ε = 10−4 , εtot = 5.29.10−5 ε = 10−6 , εtot = 0.27.10−5
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Figure 2.49: Matrix of relative error on coefficient of interaction using ACA and opti-
mization process for a mesh of circular contact spot composed of Ne = 2984 elements,
using η = 3, ϵ = 10−4 (left), and ϵ = 10−6 (right)
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Figure 2.50: Matrix of relative error on coefficient of interaction using ACA and opti-
mization process for a mesh of circular contact spot composed of Ne = 2984 elements,
using η = 3, ϵ = 10−4 (left), and ϵ = 10−6 (right)

The optimization process using low-rank SVD appears to be computationally efficient
and effective in increasing the rate of compressibility of the H-matrix. By reducing the
number of modes in each sub-block, the memory efficiency of theH-matrix is improved,
leading to higher rates of compressibility. The complexity of the SVD relates to the rank
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of the approximated sub-block, k, and arises to an order ofO(k(m+n)). The increase in the
rate of compressibility achieved through the optimization process indicates that the low-
rank SVD successfully identifies and retains the most important modes, while discarding
the less significant ones. The rate of compressibility is subsequently increased up to 90.1%
for the mesh of 804 elements, and up to 95.6% in the second case for 2894 elements, while
initially those rates of compressibility were about 76.2% and 88.2% respectively. With
the optimization process, theH-matrix can achieve higher levels of compression, leading
to more memory savings while maintaining a desired level of accuracy. In addition it
appears really affordable, and scalable to problems with much higher size.

2.3.5 H-solver

The processes involved in constructing and integrating the BEM matrix have been thor-
oughly explained. The benefits of using H-matrix approximation have already been
demonstrated through savings in the computation of coefficients and memory. Now, we
will demonstrate how solving the linear system can benefit from theH-matrix definition.

This section is designed to introduce some specialized algebraic tools forH-matrices,
following some implementation proposed in [Bebendorf, 2008]. These tools are designed
to expedite certain operations without necessitating reassembly, thereby maintaining the
memory efficiency. For solving the linear system, it may be necessary to tailor operations
such as addition and matrix-vector multiplication to theH-matrix context. Consequently,
the iterative solver is set to leverage methods specific to iterative solving.

H-matrix-vector product

Let consider M asH-matrix. The vector-matrix product, with x and b, as follows,

b =Mx (2.79)

A naive method would be to first reassemble M, losing the memory-saving allowed H-
matrix. To overcome this problem, one might implement this operation, tailored for M
defined asH-matrix see Algorithm 8.

Algorithm 8: Implementation of theH-matrix-vector-product

1 Function HVectMatProduct (M, x, b, i, j, l):
2 if M is a matrix then
3 return M.x + b

4 m,n← |C(l+1)
2i |, |C

(l+1)
2 j |

5 b1, b2 ← b[≤ m], b[m ≥]
6 x1, x2 ← x[n ≥], x[n ≥]
7 b1 ← HVectMatProduct (M11, x1, b1, 2i, 2 j, l + 1)
8 b1 ← HVectMatProduct (M12, x2, b1, 2i, 2 j + 1, l + 1)
9 b2 ← HVectMatProduct (M21, x1, b2, 2i + 1, 2 j, l + 1)

10 b2 ← HVectMatProduct (M22, x2, b2, 2i + 1, 2 j + 1, l + 1)
11 return HVectCombine b1, b2

Algorithm One possible implementation of this process is presented in Algorithm 8,
which initiates the function HVectMatProduct. This function takes the indices i, j, and the
level l as inputs. This implementation follows the one proposed for the H-matrix-vector
product in [Bebendorf, 2008]. Initially, the vector b is established as a null vector corre-
sponding to the size of the linear system. If the if condition is satisfied, b is augmented
by the product Mx, where M represents a sub-block of the originalH-matrix.
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When this condition is not met, the matrix M is further divisible into sub-blocks,
prompting the unwrapping of another H matrix at the subsequent level l + 1. Conse-
quently, the branch groups of C(l)

i and C(l)
j , as well as the pairs (C(l+1)

2i , C(l+1)
2i+1 ) and (C(l+1)

2 j ,

C
(l+1)
2 j+1), are invoked. This results in the 4 recursive calls of the function HVectMatProduct.

The vectors x and b are then partitioned according to the dimensions of the branch clus-
ters. The scalars m and n stands for the dimensions of the clusters C(l+1)

2i and C(l+1)
2 j ,

respectively. The vectors b1 and b2 are employed to construct and adapt the output vector
on fly. They are subsequently merged using the function HVectCombine.

The outlined algorithm, which solely accounts for theH matrix M, does not inherently
diminish the count of coefficients in the product. Specifically, if M is pre-assembled yet
retains the H structure, it would possess an equivalent quantity of coefficients within
each sub-block. Nevertheless, this approach could be expanded within the framework
of low-rank approximation, with M represented by the product A.B. Instead of m.n
computations, the number might be curtailed to k.(m + n), thereby potentially enhancing
the complexity akin to the compressibility rate. The process is partially illustrated in
Fig. 2.51. On the example, theH-matrix aligns with a cluster tree spanning three levels.
The yellow blocks correspond to the second level, while the blue blocks on the diagonal
are indicative of the third level. The entire matrix is denoted by the first level.

Figure 2.51: Diagram on the procedure of theH-matrix-vector-product

This diagram aims to focus on the computation of first part of the ouput vector b1.
This involves the product on the second stage of M12 with the sub-block vector x1. This
product will involve 4 matrix-vector product in turns. The vectors x1, x2, are the two-part
of the vector x1 at the second level, related to the cluster C(2)

1 .

H-matrix-vector-product &Z-curve

Despite the reduction in memory for multiplication, the advantage in terms of calculation
time is not obvious compared with the original procedure, referred as full product. Indeed,
the addition of recursive call steps would introduce extra computation and preparation
steps, which cancel out the advantages of performing operations on smaller sub-blocks.
Nonetheless, it is anticipated that for larger scale problems, being N > 104, this method
will show asymptotic benefits, although this is also dependent of the depth of the tree.
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In efforts to streamline the access to hierarchical sub-blocks, a subsequent approaches
has been developed to eliminate the recursive calls. The strategy aims to flatten the H-
matrix to enable direct access to sub-blocks via a standard container object. There are
several approaches to matrix flattening; our consideration involves Z-curves across the
hierarchical structure and its sub-blocks, inspired from [Bebendorf, 2008]. This flatten-
ing procedure is illustrated Fig. 2.52 for three distinct H-matrix structures, where the
hierarchical tree depths are either 2 or 3.

Figure 2.52: Presentation ofZ-curve and of the construction of flatH-matrix

The structure of the M matrix is streamlined, but it would require the definition of an
object like SLevel, which contains all the absolute positions of each sub-block and their
dimensions. The matrix-vector product can then follow the process described Fig. 2.53.
The positions m, n and dimensions d, e, got from SLevel, are used to define the partition
xk and bk of the global vectors x and b, respectively. The b vector continues to be built
incrementally, along the travel of the series of sub-blocks Mk.

Figure 2.53: Diagram ofH-matrix-vecteur product with a flat structure

The sub-block vector product can be completed via a looping process. An instance of
this algorithmic implementation for low-rank approximations is provided in Algorithm 9.
In this context, the sub-block Mk is represented by the product Ak.Bk when the sub-block
is admissible, or by Ak alone in cases where the sub-block is not admissible.

H-resolution performance

Let consider again the linear system.(2.79), with M a matrix of shape (N × N). The
complexity of the inverse of M varies in order of O(N3). This appeals to the resolution
by iterative solver, especially for fully-populated matrix and this type of problem, which
aim to reduce the complexity to O(N2).

Those methods could account for many different methods and use. One of the best-
indicated method for the iterative resolution is Generalized Minimal Residual (GMRES)
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Algorithm 9: Implementation of theH-product &Z-curve

1 Function HMatVectProductFlat (A, B, x, b, SLevel):
2 for k in range(|A|) do
3 Ak ← A[k]
4 Bk ← B[k]
5 m,n, d, e← UnWrap (SLevel[k])
6 if Bk is empty then
7 b[m : m + d]+ = Ak · x[n : n + e]

8 else
9 b[m : m + d]+ = Ak · (Bk · x[n : n + e])

10 return b

method introduced by Saad and Schultz. [Saad and Schultz, 1986].

GMRES This method allows to approximate a vector solution for x accounting for the
definition of a Krylov’s sub-space, based on Arnoldi’s algorithm for the iterative process. The
Krylov’s sub-space is defined as a span of vectors,

Kn = Span{b,Mb,M2b, · · · ,Mn−1b}

Krylov methods can leverage theH-product implementation tailored forH-matrices.
The convergence properties of such methods have been investigated by the work of
Kandler-Schröder [Kandler and Schröder, 2014].

Both the H-product and the H-product & flat methods offer a memory-efficient strat-
egy when operating withH-matrices. Consequently, the Krylov subspace could be con-
structed with these methods in mind. To evaluate the performance of the iterative solver,
we take the example of circular meshes with various number of elements. The outcomes
in times are presented in Fig. 2.54. The results employing H-product and H-product &
Z-curve methods are both depicted in greenish colors, while the blue line represents the
results computed by GMRES using the full-matrix assembled.
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Figure 2.54: Time for resolution of linear system, according to different mesh size problem
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The problem size variation depicted in Fig. 2.54 spans roughly one order of magnitude
in terms of the number of elements. This scale range in size of problem is restrictive. The
experiment is carried out on a computer equipped with a 1.30GHz Intel Core i7 processor
and 15 GB of RAM memory. The resolution using the fully-assembled matrix is still
faster than those employing H-matrices. In reality, it relies on the efficiency of the
vector-matrix operations and the specific implementation. Since this problem utilizes a
Python implementation, it is less efficient compared to optimized vector-matrix operators.
Therefore, at this stage, solving withH-matrix operators takes 10 about times longer than
operations on the full matrix. Nevertheless, this implementation already reduces the
memory requirement. For the largest problem illustrated in Fig.2.54, with Ne = 19096
elements, a compression rate of 79.9% is achieved.

Conclusion

Throughout this section, we delved into the problem of conduction generated by real
contact interface. This endeavor combines an appropriate physical formulation with
numerical development. It begins with the establishment of an integral equation, and
follows by the construction of numerical methods to solve it. It has conducted us to the im-
plementation of the Boundary Element Method, culminating in numerical enhancements
leading to a Fast-BEM version.

Section 2.2 is dedicated to the formulation of the linear problem to solved by the
Boundary Element Method. We have endeavored to maintain this formulation as general
as possible, accounting for different shape elements and interpolation functions. Every
step of our numerical development has been thoroughly detailed and illustrated, offering
deeper insight into our technical choices. For the sake of precision, this formulation has
led us to concentrate the presentation on the most fundamental issues, such as:

• Numerical Integration: It has been highlighted that traditional Gaussian quadrature
techniques are not suitable for integrating the Green function. To evaluate precision,
we suggest various parametrization methods, particularly for Singular and Quasi
Singular integrals.

• Numerical Precision: In order to thoroughly assess precision, different interpolations
and element types have been analyzed. The precision benefits from the benchmark
scenario of a circular contact spot, utilizing its analytical solution. Ultimately,
this has led us to choose constant interpolation, coupled with triangular-shaped
elements.

The third Section 2.3 is dedicated to the implementation of theH-matrix, constructed
to enhance the capabilities of the classical BEM. For this part we have solely accounted
for triangular elements and constant interpolation, in regard of the precision results at
Section 2.2. The use ofH-matrix may be seen as a granted heuristic method, but similar
to Section 2.2, we have endeavored to justify its implementation. These discussions have
raised critical questions about:

• The Clustering Consistency: We have considered different clustering methods. This
step could incorporate various approaches, enhancing the cluster’s geometries. In
evaluating alternative methods, the median technique continues to prove its effec-
tiveness, in terms of time efficiency andH-tree consistency.

• Precision on Final Results: The efficacy of the low-rank approximation, and its ACA+
implementation, has been also evaluated in terms of result precision. Errors in both
matrix components and final outcomes have been documented. The influence of
both maximal hierarchical level lm and precision of ACA+ construction ϵ have been
carefully examined, in comparison with classical BEM.
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• Performance Review: The application of the H-matrix leads to considerable sav-
ings in both memory and time, reducing the asymptotic complexity to O(N log N).
These benefits have been analyzed based on the parameters (lm, ϵ), proving their ef-
fectiveness in handling realistic problems. Additionally, a consistent matrix-vector
product implementation has been implemented to leverage the structure of the
H-matrix for the iterative linear solver, GMRES; various implementations of the
H-matrix have also been considered, further enhancing performance, notably by
the flattening using theZ-curve.

This work was structured into three sections. The numerical methods employed have
been thoroughly documented and illustrated through particular examples. This section
may serve as a guideline for BEM and Fast-BEM implementations.

We believe that the conductivity problem formulation makes BEM a particularly
good choice. Indeed, the integral equation established here exclusively considers the
conductive area, without the need for bulk modeling or even non-conductive surface.
This methods enables to define consistently the geometry of contact spots and properly
refine the mesh near edges. In the following section the methods developed in this part
will allow us to deal with contact spot of very complex geometries.
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Résumé du Chapitre III
Depuis les premiers observation d’aire réelle de contact, nous savons que celles-
ci sont composées de taches de contact distinctes, regroupées en cluster. Souvent,
dans les modèles de resistance de constriction, les formes de ces taches sont réduites
au cas circulaire, alors que l’étude de surface rugueuses en contact fait apparaitre
des taches à géométrie plus complexes. Cette partie plonge ainsi dans le problème
de la conduction pour ces taches, tirant partie de notre modèle BEM. Cette partie
sera donc divisée en plusieurs sous-partie, chacunes dédiées à une forme de tache
particulière. Sans être tout à fait exhaustif, nous avons chercher à être le plus
complet possible dans la variété des géométries traitée. La première étude est
associée à l’étude des taches annulaires. La deuxième sous-partie présentera l’étude
des taches en forme de fleur, d’étoile et d’engrenage, dont la conductivité varie en
fonction du nombre de pétal. Une troisième sous-partie vise à étudier des taches
à contour rugueux de géométrie auto-affine, généralisant l’analyse des taches en
forme de fleur. Une variante des taches en forme de fleur à deux rangées de pétale
sera ensuite étudiée. Cette partie sera enfin conclue par l’étude de tache en forme
de flocon de Koch. Chacune de ces études fera l’objet d’analyse phénoménologique,
permettant de mieux comprendre les résultats, et d’exhiber l’influence de certain
paramètre. Pour les taches auto-affines l’analyse ferra notamment intervenir des
paramètres tels que le rayon moyen, l’écart type du contour, la largeur du contenu
spectral, ou la dimension fractale.

Abstract for Chapter III
Since the early observations of real contact area, we know that those are composed
of distinct contact spots, grouped into clusters. However, in some models of
constriction resistance, often the shapes of the spots are reduced to circles for
which an analytical solution exists. In general case, the conductivity of spots
of more complex shape is difficult to relate to their shape and to a particular
geometric parameter. This chapter thus delves into the problem of conduction
for an isolated spot of complex shape, taking advantage of our BEM solver. This
chapter is divided into several sections, each dedicated to a particular shape family.
Without being entirely exhaustive, we have sought to be as comprehensive as
possible in the variety of geometries treated. The first study is associated with the
study of an annular spot, which is the simplest non-simply connected shape. The
second section will present the study of spots shaped like flowers, stars, and gears,
whose conductivity varies with the number of ”petals”. The third section aims to
study spots with rough contours of self-affine geometry, generalizing the analysis
of flower-shaped spots. A variant of flower-shaped spots with two sets of petals will
then be studied along with a simplified superposition model handling two modes
as if they could be summed up. This part will end with the study of spots in the
shape of a Koch snowflake. Each of these families benefit from a phenomenological
analysis, allowing a better understanding of the results and geometrical parameters.
For self-affine spots, the analysis will particularly involve parameters such as the
average radius, the standard deviation of the contour, the width of the spectral
content, and the fractal dimension. The constructed phenomenological models
permits to estimate the asymptotic conductivity in the fractal limit.
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3.1 Introduction

The primary motivation for the study of conductivity of non-convex contact spot stems
from the observation of contact spot geometry formed between model rough surfaces
(self-affine random geometry). Figure 3.1(a) illustrates how individual contact spots
evolve under increasing load [Yastrebov et al., 2015a], while in (b) three separate contact
spots obtained from similar simulations demonstrate high complexity both in terms of
connectedness and boundary shape. Even under relatively small loads, very complex
contact spots can be formed if the spectral content of roughness is sufficiently rich. How-
ever, basic models of contact resistance assume that individual contact spots distributed
over the nominal contact area possess simple shapes: elliptical or circular.

In contrast, the depicted contact shapes can be non-simply connected (having holes)
and exhibit highly complex boundaries, which can be characterized by the ratio of the
square root of the area to its perimeter, also known as compactness. In this study, we
investigate the impact of connectedness and compactness of individual contact spots
on their conductive properties. Instead of studying contact spots obtained in direct
numerical simulations, as shown in Fig. 3.1, we construct relatively simple models that
capture the primary features of such spots: (1) connectedness, and (2) low compactness.
The first effect is represented by an annulus shape with a varying ratio of inner to outer
radius. Compactness, as a first approximation, is modeled through a flower-shaped spot
with varying numbers of petals and their lengths. Further, some additional relatively
simple ”multi-petal” shapes are considered. Moreover, the self-affine aspect of contact
spot geometry is considered by modeling a flower with multi-scale petals: paraphrasing
Archard, we envision ”petals on top of petals on top of petals.” The objective of the
study is to propose a relatively simple model enabling to predict thermal and electrical
resistance using geometrical parameters of the conductive spot.

(a) (b)

Figure 3.1: Simulation results of the true contact-area between self-affine random rough
surfaces taken from [Yastrebov et al., 2015a]: (a) evolution of separate contact spots under
increasing load, (b) snapshots of separate clusters highlighting the complexity of the
shape.

This aims to study the effects of the topology and the shape of contact spots on
simplified examples: in Section 3.2 we briefly study the effect of not simple connectedness
on an example of the flux through an annulus spot; the effect of shape irregularity on
a simplified example of a flower-shaped spot (and similar shapes) with equally spaced
petals of the same size, in Section 3.3; in Section 3.4, the same effect is studied on self-affine
spots which could be seen as flower-shapes spots with polydisperse petals following a
self-affine distribution. Furthermore in Section 3.5, some relevant results are obtained
for two-mode flower-shaped spots highlighting the evolution of the flux for vanishing
amplitude of high-frequency mode; ultimately in Section 3.6, the conductivity related to
the fractality is studied in the modeling on contact spot shaped like Koch snowflake.
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3.2 Conductivity of not simply connected spot

This section aims to study the total flux through an annulus spot of different internal
radius. The question is to which extent the flux is altered by the presence of small internal
holes in not simply connected spots. The internal radius is r = b, the external one r = a,
their ratio is denoted ξ = b/a < 1. The boundary conditions remain the same as for circular
spot: the potential is set constant U = U0 at the annulus (b ≤ r ≤ a) the zero flux is set
elsewhere (r > a and r < b), at infinity the potential is set to U = 0. The geometry is shown
in Fig. 3.2 for three different values of ξ. We are mainly interested by the asymptotic
evolution of the total flux Q(ξ) in the limit of k≪ 1.

ξ = 0.2 ξ = 0.5 ξ = 0.8

Figure 3.2: Geometry of the annular contact spot for various ratios of the internal to
external radii ξ = {0.2, 0.5, 0.8}.

The flux diverges at borders of the annulus, however the total flux should be contin-
uous and decreasing with respect to the relative hole radius ξ. As ξ → 0, the total flux
should tend to Q◦, whereas for ξ → 1, the flux should vanish Q → 0. We could also
conjecture, from a physical point of view, that the flux should be a concave function of
ξmeaning that small holes should not affect considerably the flux. Subsequently, the lo-
cal singularity on the inner edge should be less pronounced than on the outer edge being
regularized to some extent by the interaction with the whole inner border especially for
small size holes.

3.2.1 Analytic result

The problem of annulus contact spot was first subjected to analytical study. We can
especially recall the work attempted by Smythe [Smythe, 1951], who solves this by su-
perposition method, and establishes a law for the flux with different geometries, and
provides tabulated results. Other authors [Cooke, 1963, Collins, 1963, Fabrikant, 1993]
expanded Smythe’s work by reformulating the problem as a triple integral or as a Fred-
holm’s integral equations of second kind. However, those solutions do not provide closed
form formulas for the flux; the influence of the effect of the hole cannot be easily deduced.
Fabrikant [Fabrikant, 1993] proposed an iterative method for the resolution of the inte-
gral system. And Love’s solution [Love, 1976] based on constructing upper and lower
limits series provided the following closed form solution:

QLove

Q◦
= 1 −

4
3π2ξ

3
−

8
15π2ξ

5
−

16
27π4

ξ6
−

92
315π2ξ

7
−

416
675π4

ξ8 + o(ξ8) (3.1)

When ξ is small the flux decrease induced by the annulus, is in order of ξ3. This
means that the decrease in flux is lower in magnitude than the decrease in perimeter of
magnitude ξ, or even in area of magnitude ξ2.
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3.2.2 Finite element results

Geometry definition

The solution validation is sought using numerical simulation, in this case using the Finite
Element Method (FEM). Thanks to the axial symmetry, the problem can be reduced to a
square plane of length and width R ≫ a. Considering width and height of the square
section large enough, we could assume the FEM well-defining the infinite geometry of
this problem. We need to control mesh definition near the inner and outer edges of the
annulus where the imposed boundary conditions make diverge the normal flux. The
Gmsh software [Geuzaine and Remacle, 2009] enables to set specific mesh sizes at the
constructing points.

Method: Annulus mesh construction

To capture accurately the singularities at the vicinity of the inner and the outer edges of
the annulus, two semi-circular shapes of radius re are constructed near the singularity
points. The element size at the annulus’s edge is set to hmin, considering hmin/a ≪ 1.
The mesh size is set to a coarser value far from the annulus hmax, as hmax/hmin ≫ 1.
Supplementing the mesh refinement near the annulus’ edge, the mesh size is set to he,
at the edge of the semi-circular object setting he = 10hmin. All the mesh size parameters
are related to hmin, to ensure a consistent refinement.

Mesh setting parameters :

• Dimension of the square geometry, R/a ≥ 5,

• Radius of the surrounding circle, re/a = 0.1,

• Mesh parameters, hmin/a ≤ 0.01,

An example for the annulus mesh geometry is represented in Fig. 3.3, using triangular
elements for ξ = 0.5, . The surrounding circle at the edges of the singularities are depicted
in a darker color than the rest of the mesh. The boundary conditions are the following:
within the annulus the potential is set to U0, zero normal flux to jn = 0 is set on the
free-surface out of the annulus and for the outward boundary when r = R. This is
complemented by the potential value of U∞ = 0 at z = R. Using FEM, we can obtain the
potential (or temperature) distribution corresponding to these boundary conditions. The
problem geometry described in the previous section, as shown in Fig. 3.3, is utilized, and
the results are presented in Fig. 3.4. In response to the potential field, we can determine
the flux field at Gauss points and extrapolate it to surface nodes. Selected results for
various annular geometries are presented in Fig. 3.5, plotted against the normalized
radial position, defined as ′r = r/a. As anticipated, the normal flux exhibits divergences
at both edges. But the singularity at the hole (inner edge) is less pronounced than at the
outer edge, with the flux decreasing more rapidly near the hole compared to its decline
at the outer edge.

Convergence with respect to geometry and mesh

The total flux through the annulus spot can be evaluated by summing up nodal ”reactions”
over the contact area. By employing different mesh definitions and different square
sizes, we can construct an extrapolation technique. First, it is well known that the
mesh convergence for linear elements is of order h/a, so we can find coefficients of the
affine function for the flux Q(ξ, h) = Q∗(ξ) + m(ξ)h. On the other hand, the convergence
with respect to the geometrical parameter a/R can be also established as Q(ξ, a/R) =
Q∗(ξ, a/R) + n(ξ)a/R. These relation of proportionality can be expressed as

Q(ξ) = Q∗(ξ) +m(ξ)
h
a
+ n(ξ)

a
R

(3.2)
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Figure 3.3: Mesh definition and boundary conditions for modeling of an annulus contact
spot, using the parameters ξ = 0.5, hmin/r0 = 0.005 and R/a = 5

Figure 3.4: Result in temperature field computed by FEM, for an annulus of ξ = 0.5,
using a cylinder size of R/a = 5 and a mesh size of hmin/a = 0.005

Where Q∗(ξ), m and n are coefficients, which depend on the annular geometry with
ξ and could be determined by least mean squares fit as presented for the annulus
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Figure 3.5: Finite element results of the normal flux distribution for annulus spot for
different values of ξ, dashed line represents the normal flux of a circular spot.

problem with ξ = b/a = 0.5 in Fig. 3.6. This problem was addressed for various
cylinder sizes with values of R/a = 5, 10, 15, 20, 25, 50, and for different mesh sizes
h/a = 0.001, 0.00075, 0.0005, 0.00025, 0.0001. It accounts for a total of 30 simulations. The
fitting process allows us to identify the coefficients in eq.(3.2): Q∗/Q◦ = 0.98, m/Q◦ = 0.15,
and n/Q◦ = 0.12. The limit Q∗ could be reported as the best approximation for the flux
for a half-space geometry a/R→ 0 taking into account mesh convergence h/a→ 0.

This extrapolation procedure agrees with the extrapolation process proposed by
Richardson [Richardson, 1911]. Aiming to improve the precision of the results, those
are extrapolated using 2 different mesh sizes ( h1 and h2 ) and 2 different dimensions of
cylinder R1 and R2, with R1 > R2 and h1 < h2. So to find an accurate estimation for the
flux, we solve the problem for three different configurations (h1,R2), (h1,R2), and (h1,R2).
Simulation results for the total flux are shown in Fig. 3.7 with the flux normalized by the
one of a circular spot Q◦. The asymptotic results for small holes is identified my least
mean square fit using a power-law of ξ as detailed in the frame below.

Model: Total flux for annular contact spot

An asymptotic result for the flux through an annulus with small holes ξ≪ 1 could be
properly fitted as

Qfit = Q◦
(
1 − αξβ

)
, (3.3)

where α, β are positive parameters.

The parameters α, β were identified by least squares method as α ≈ 0.1435 and
β ≈ 3.028 in the interval ξ < ξlim = 0.2, which are very close to analytical results
of [Love, 1976, Fabrikant, 1993], α = 4/(3π2) ≈ 0.1351 and β = 3 (see Eq.(3.1)). Naka-
mura’s results [Nakamura, 1993] calculated by the BEM are also displayed for compar-
ison, however, because of the lack of Richardson type extrapolation and convergence
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Figure 3.6: Linear dependency on the cylinder dimension and the mesh size for an
annular contact spot with hole dimension ξ = 0.5

study, they underestimate the flux value. The Love’s solution slightly overestimates the
flux for higher values of ξ, but this could be readily improved by including a larger num-
ber of terms in his series. In fact, all polynomial coefficients of ξ for the series expansion
of the flux function are negative and adding new terms will slightly reduce the flux. Nev-
ertheless, the first terms in Eq. (3.1) are in very good agreement with the numerical results
at least for small values of ξ.

Expectedly, we conclude that the total flux is very weakly dependent on the presence
of small holes in annulus spots because the corrective term is of order ξ3 with a small
factor ∼ 0.1. Therefore, the not simply connected spots, at least for holes located far from
the outer boundary, conduct almost as well as simply connected spots with the same outer
boundary. In addition to this axisymmetric study, one could conduct a similar study but
with a hole placed with some excentricity with respect to the center. Such a study would
provide an even stronger argument on the effect of such holes in conductivity problems,
however, this study is not included in the scope of the current paper.

3.3 Conductivity of flower-shaped spots

To mimic complex shapes formed by contact between random rough surface, we first
consider a simple geometrical model which we call flower-shaped spot parametrized a
radius function r(θ), with θ the polar coordinate.

Definition: Geometry of the flower-shaped spot

The radius of the flower-shaped contact spot, is defined as a circular contact spot
enclosing a sine profile, as:

r(θ) = r0 + r1 cos (nθ), r1 < r0 (3.4)

where r0 is the mean radius, r1 is the half-length of petals and n is their number.
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Figure 3.7: Total flux of an annulus as a function of internal to external radius ratio
ξ: shown the finite element results (circles), least squares fit of an offsetted power-law
for the asymptotic solution Q′fit for ξ < 0.2 and an approximate analytical solutions
by [Love, 1976] QLove/Q◦. (a) – normalized total flux Q′(k) = Q(k)/Q◦; (b) – normalized
flux difference compared to the circular flux (Q◦ −Q(k))/Q◦ in log-log scale highlighting
the power-law flux evolution.

So the two positive dimensionless parameters describing the shape are ξ = r1/r0 < 1
and n. Different flower-shaped spots are presented in the Fig. 3.8. Note that the average
radius does not change with the number of petals nor with their length and is equal
to ⟨r⟩ = r0. Circles of radius r0 and r0(1 + ξ) = r0 + r1 are also shown in the figure;
corresponding to minimal and maximal limits for the resulting flux Qmin(r0) = Q◦ =
4kr0U0, Qmax = Q◦(r0 + r1) = 4kr0(1 + ξ)U0,

1 ≤
Q(r0, ξ,n)

Qmin
≤ 1 + ξ

n = 4, ξ = 0.1

r0

n = 4, ξ = 0.2

r0(1 + ξ)

n = 7, ξ = 0.1 n = 7, ξ = 0.2

Figure 3.8: Examples of flower-shaped spots with ξ = {0.1, 0.2} and the number of petals
n = {4, 7}.

The particularity of these flower-shaped spots is that the perimeter increases with the
number of petals whereas the area remains constant. They are given by the following
equations
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Property: Area and perimeter for flower-shaped contact spot

The area and the perimeter of flower-shaped contact spot is given by

A = πr2
0

(
1 +
ξ2

2

)
, (3.5a)

P = r0

2π∫
0

√
1 + (nξ sin(θ))2dθ, (3.5b)

We can notice that the integrand depends on the dimensionless parameter n′ = nξ ∈ R
which is continuous contrary to the number of petals n ∈ N. To characterize the shape
of the flower-shaped spot, we could also use compactness C being the ratio of the square
root of the area to the perimeter:

C(n′) =

√
A

P
=
√
π

1 + ξ2/2
4E(in′)

, (3.6)

where E(x) =
∫ π/2

0

√
1 − x2 sin2(θ)dθ is the complete elliptic integral of the second kind

and i is imaginary unit. For small values of ξ, we could assume that the compactness
depends on n′ only, for n′ → 0, E(in′) → π/2 and the compactness tends to the maximal
value, i.e. the compactness of a circle C→ C◦ = 1/(2

√
π) ≈ 0.282.

3.3.1 Geometrical reduction

The flower shape presents a dihedral symmetry Dm which allows us to reduce the geom-
etry problem for FEM. BEM could exploit this property in turns. A flower-shaped contact
spot, made of n petals, enclose m = 2n identical section. Each petal section can be di-
vided in two; the whole geometry is rebuilt by one reflection and a series of n rotation.
An example of dihedral symmetry is presented Fig.3.9, for a flower-shape with the petal
height of ξ = 0.1, and with a number of petals of n = 32. In the case of flower with 32
petals, there is Initially 64 identical sections. However in the example displayed Fig. 3.9,
the division is limited to 16 sections.

As mentioned the dihedral symmetry enables to reduce the size of the BEM problem.
In fact the problem can be reformulated as detailed in the blue frame below.

Definition: Dihedral symmetry

For a set of {D1, · · · ,Dm}, referring to set of elements, the BEM linear system can be
decomposed according to these sets of :

G11 G12 · · · G1m
G21 G22 · · · G2m
...

...
. . .

...
Gm1 Gm2 · · · Gmm



{J1}

{J2}

· · ·

{Jn}

 =

{U1,0/2}
{U2,0/2}
· · ·

{Um,0/2}

 (3.7)

Where the global matrix G is divided in sub-blocks, Gi, j. The subindex i refers to the
set Di, set of physical nodes for the potential. And the subindex j refers to the set of
physical nodes for the flux.
This development is supplemented by assuming that the solution for the normal flux
is the same of all sectors J1 = J2 = · · · = Jm. The linear system can be condensed to its
first line: substituting all vectors Ji by J1, the problem can be reformulated as follows :(∑m

i=1 G1,i
)
{J1} = {

U0

2
} (3.8)
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TheH-addition helps to preserve the hierarchical structure. The problem can be still
solved usingH − GMRES tool given Section 2.3.5.

Mesh definition

The normal flux is supposed singular on the edges, still requiring special refinement. An
example of mesh definition is presented Fig. 3.10. In the problem, an angular section of
θs = 2π/16 is meshed, standing for the 16-th of the whole geometry, referring to the darker
section in Fig. 3.9. This section avoids element discrepancy at the tip of the geometry,
and so avoids degradation in the solution. Practically, BEM result shows sensitivity to
the geometry of the tip element, which bounds the number of section division.

Method: Mesh construction for flower shape

The geometry is decomposed in two parts. The darker region ensures consistent
refinement at the edge. In the opposite, within the lighter one the mesh is coarsened.
The mesh parameters are tailored to follow the max edge’s curvature, αmax, as:

hmin =
h

log10(αmax)

Where h is the initial value for the mesh size, and hmin represents the mesh size so-
defined of the contour edge. Conversely the mesh size is set to a value of h0 at the
tip of the geometry, i.e. in the flower’s center. The edge’s curvature increases as the
number of petals or the ratio ξ increase.

D1

D2

D3

Dm−1

Dm

Figure 3.9: Symmetrical division for a flower shape with ratio ξ = 0.1 and n = 32 petals.
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θs

r0

r0 + r1

Figure 3.10: Mesh definition of the 16-th section of the flower contact spot ξ = 0.1 and
n = 32, with element parameters hmin/h0 = 0.2, and h0/r0 = 0.1

3.3.2 Conductivity results

This study was conducted using both FEM and BEM. Despite the fact that the BEM is
more appropriate for half-space approximation, the comparison of two methods with an
extrapolation in terms of the size of simulated domain used in the FEM assess the validity
of the latter. The same geometric reduction used in the BEM is also applied in defining
the FEM mesh using dihedral symmetry. The physical definition for the FEM problem,
includes extra boundary condition of the edge of the geometry. The normal flux is equal
zero, as no-flux is exchanged.

Some results for the normal flux are presented in Fig. 3.11 for n = {4, 7, 10} petals and
for ξ = 0.1, obtained from BEM. For the first two cases, the symmetry is fully exploited
whereas for n = 10 the angle is limited to π/5 to preserve good mesh quality in the center.
Meshes are refined near the outer edges where the flux is singular. For n = 4 the total
flux is Q ≈ 1.0084Qmin, for n = 7 the total flux is Q ≈ 1.015Qmin, and for n = 10 the total
flux is Q ≈ 1.0209Qmin. So there is a trend to increase the total flux with the increasing
number of petals. Visually we can also observe that the singularity in the trough (petal’s
root) is weaker than the one near the crest (petal’s extremity). The more petals we have,
the weaker the flux intensity in the trough because of the increasing interaction of the
neighboring petals; a similar trend was observed for the annular spot for small internal
radii.

n = 4 n = 7 n = 10

0.62 1 2 3 4

jn

Figure 3.11: Simulation results for the normal flux for flower-shaped spots with n = 4, 7, 10
and ξ = 0.1.

In total, 97 simulations1 were carried out for ξ = 0.1 and n ∈ (2, 150) as well as
for ξ = 0.2 and n ∈ (2, 100). The resulting total flux with respect to the normalized
number of petals n′ is presented in Fig. 3.12. Those results are computed with Richardson
extrapolation obtained by two meshes of different density for FEM and BEM and using
a similar extrapolation for domain’s dimensions in case of FEM simulations. The total

1Without counting simulations used to use Richardson extrapolation.
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flux, offset by the minimal flux Q − Q◦ could be normalized by the difference between
the maximal and the minimal theoretical fluxes, corresponding to circular spots of radii
r0(1+ξ) and r0, respectively, i.e. we get in the denominator Qup −Q◦ = 4kr0ξU0 = ξQ◦. A
normalization is defined for the total flux of the flower-shaped contact spot, encompassing
the geometrical consideration, as presented in the blue-frame below.

Definition: Flux normalization & flower-shaped contact spots

This normalization results in a universal curve for the total normalized flux for any r0
and ξ:

Q′ =
Q −Q◦

Qup −Q◦
=

Q −Q◦
ξQ◦

(3.9)

The normalized flux evolution seems to be logarithmic, but from the physical point
of view, the flux cannot overpass Qup, therefore 0 ≤ Q′ ≤ 1 for any n′. The resulting
flux is well fitted by a two-parameter function which, however, was found empirically,
as presented below:

Model: Total flux for flower-shaped contact spots

The results of normalized flux transmitted by flower-shaped contact spot is identified
by a law of n′, as formulated:

Q′fit(n
′) = a

(
1 −

1
bn′ + 1

)
, 0 < a ≤ 1. (3.10)

Where n′ is the normalized number of petals, and a, b are two positive parameters.

This fit function is also shown in Fig. 3.12 along with FEM and BEM simulation results.
The coefficients determined by least squares fit are presented in Table 3.1. The slope at
n′ = 0+ is equal to the product ab. Even if the coefficients a and b are slightly different for
different sets, the slopes remain close for all three independent fits, and roughly equal to
0.3. Combining Eqs. (3.9) and (3.10), we obtain the following phenomenological equation
for the total flow of a flower-shaped spot:

Q = Q◦
(
1 + aξ

(
1 −

1
bnξ + 1

))
≈ Q◦

(
1 + 0.923ξ

(
1 −

1
0.326nξ + 1

))
, (3.11)

where Q◦ = 4kr0U0. For the infinite number of petals n of finite half-length factor ξ, there
is a limit flux given by this fit, limn′→∞(Q′fit) = a ≈ 0.923 and this limit is independent of
ξ. However, the validity of the suggested fit beyond the studied interval of n′ cannot be
taken for granted. An argument in favor of such a limit a < 1, i.e. that the total flux for
the infinite number of petals remains below the flux of a circular shape of radius r0(1+ξ),
could be made based on the area of the conductive spot. Indeed, the area of the full circular
spot is considerably bigger than this of the flower-shaped spot πr2

0(1+ξ)2 > πr2
0(1+ξ2/2).

On the other hand, the small features (infinitely thin petals) should not strongly affect
the conductivity of the spot, thus suggesting that possibly the flux should simply tend to
1. However, the current fit function could not be properly approximate the data if one
sets a = 1. The question of a rigorous definition of the limit flux for the infinite number
of petals remains open. But our initial guess, for the fitted parameters is given by the
following limit flux:

lim
nξ→∞

Q ≈ Q◦(1 + 0.923ξ) < Qup = Q◦(1 + ξ). (3.12)

Even though such a flower-shaped geometry, especially in the limit of infinite number
of petals, is not very relevant to contact problems between isotropic surfaces, which was
at the origin for this study, this limit value presents an interesting by-product of this
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study. Among other results one can deduce a relation between n and ξ which ensures x
fraction conductivity in the interval Q◦ and Qup = (1 + ξ)Q◦, with Q = Q◦ for x = 0 and
Q = Q◦(1 + ξ/2) for x = 0.5:

x = a
(
1 −

1
bnξ + 1

)
⇔ n′ = nξ =

[
x

b(a − x)

]
⇒ nξ ≈

[
x

0.326(0.923 − x)

]
, (3.13)

Therefore, to reach the mean flux between two limits, i.e. for x = 0.5, one would need
a spot with nξ ≈ 3.61, i.e. for ξ = 0.2 one would need approximately 18 petals and for
ξ = 0.1 a double of that. However, to reach 75% (x = 0.75), for ξ = 0.1, one would need a
spot with approximately 130 petals.

Parameters Coefficients
Simulation ξ n ∈ a b ab

FEM 0.1 [1, 150] 0.928 0.327 0.304
FEM 0.2 [1, 100] 0.923 0.326 0.301
BEM 0.1 [1, 256] 0.923 0.326 0.301

Table 3.1: Least squares fit for coefficients of Eq. (3.10) for the sets of results of flower-
shaped spot obtained using FEM and BEM simulations.
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0.6

0.8

1

Q
′
=

(Q
−

Q
◦
)/

(Q
up
−

Q
◦
)

FEM, ξ = 0.1
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Figure 3.12: Simulation results for the normalized total conductivity for the flower-shaped
spot as a function of normalized petal’s parameter n′ for different ξ, three independent
least squares fit of function (3.10) are also plotted; the three corresponding tangents at the
origin are also plotted.

3.3.3 Other ”multi-petal” spots

The same conductivity study could be conducted on other simple forms possessing a
single-scale petal-like structures with the same symmetry properties. Specifically we
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identified the following shapes: star-shaped and gear-shaped spots shown in Fig. 3.13
and Fig. 3.14, respectively. For ”stars”, each petal is made up by straight lines connecting
the roots and extremities of ”petals”, i.e. points with radial coordinates r0(1−ξ), r0(1+ξ).
The number of ”petals” (or ”rays”) as previously is denoted by n, and the half-petal length
r1 is again determined by the ratio r1 = ξr0. The gear-shaped spots are made of circular
arcs with constant r = r0(1−ξ) and r = r0(1+ξ) over equal angular segments. Contrary to
C∞ flower-shaped spots, star-shaped ones are only of class C0 with respect to θ whereas
gear-shaped spots represent multivalued mapping, so they are not even injective even for
a single ”petal” or ”tooth”.

n = 10, ξ = 0.1

r0

n = 20, ξ = 0.1

r0(1 + ξ)

n = 10, ξ = 0.2 n = 20, ξ = 0.2

Figure 3.13: Examples of star-shaped spots with n ∈ {10, 20} petals, and half-petal length
defined by ξ ∈ {0.1, 0.2}.

n = 10, ξ = 0.1

r0

n = 20, ξ = 0.1

r0(1 + ξ)

n = 10, ξ = 0.2 n = 20, ξ = 0.2

1
Figure 3.14: Examples of gear-shaped spots with n ∈ {10, 20} petals, and half-petal length
defined by ξ ∈ {0.1, 0.2}.

The area of these shapes can be readily expressed by an elementary sum of triangles
and a regular polygon for the stars, or circular sectors for the gears. Area, perimeter and
compactness can be readily developed for these shapes contact spot as presented in the
blue-frame below.

Definition: geometric properties for star & gear shapes

Star-shaped contact spot :

Pstar = 2
√

2nr0
√

1 + ξ2 − (1 − ξ2) cos(π/n),

Astar = nr2
0(1 − ξ2) sin(π/n),

Cstar =

√
(1 − ξ2) sin(π/n)

2
√

2n
√

1 + ξ2 − (1 − ξ2) cos(π/n)
.

(3.14)
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Gear-shaped contact spot :

Pgear = 2πr0(1 + 2n′/π),

Agear = πr2
0(1 + ξ2),

Cgear =

√
(1 + ξ2)

2
√
π(1 + 2n′/π)

.

(3.15)

All those geometric features are summarized in Fig. 3.15. In summary, the star-shaped
area converges to

Astar
n→∞
−−−−→ πr2

0(1 − ξ2),

but for all n it is always smaller than the area of gear- and flower-shaped spots:

Astar < Aflower < Agear.

The gear-shaped spots also have a bigger perimeter than the one of flower and star for a
given number of petals:

Pflower ≈ Pstar < Pgear.

Finally, the gear-shaped spots appear to be the least compact shape, while the flower
shape is as compact as the star

Cgear < Cflower ≈ Cstar.

All these results are illustrated in Fig. 3.15.

Mesh definition

Similar to the problem with flower-shaped contact spots, simulations for these shapes
were conducted using BEM. The star- and gear-shaped spots present the same dihedral
symmetry Dm as for the flower-shaped, which allows us again to reduce the problem
geometry. The mesh is divided in two region ensuring the consistent refinement on the
edge, and in opposite the coarsening at the tip. The mesh size parameter is set to h1 on the
edge, and is defined by h0 at the tip element. Those two mesh size parameters relates as
h1 = h0/20. Examples of meshes are represented in Fig. 3.16 and Fig. 3.17, respectively for
star and gear shape contact spot both with 32 dents, and height of ξ = 0.1. These meshes
are both built with mesh sizes h0/r0 = 0.1.

Flux results

Qualitatively, all three types of shapes show the same trend in the total flux evolution
with the number of ”petals”: an initial steep increase and further saturation to a more
or less constant value. The thermal conductivity of the gears is higher than that of the
flowers, while the star-shaped configuration displays a lower conductivity. We could
attribute this ordering to the only basic geometric parameter which significantly differs
for all three of them, namely the area. Another consideration is the amount of area located
closer to the outward boundary, which of course is higher for the gear like geometry than
those of flower and star. In the limit of the infinite number of petals, the following result
(initial guess obtained by extrapolation) is obtained (see parameter a in Table 3.2):

Qlim
star ≈ 0.903 < Qlim

flower = 0.923 < Qlim
gear = 0.978.

However, we would like to highlight once again that these values must be seen as a first
guess, and a more rigorous assessment (e.g., using an accurate asymptotic analysis) is
needed.
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Figure 3.15: Comparison for perimeters (a), areas (b) and compactness (c) between the
different shapes of contact spot

r0

r0 + r1

Figure 3.16: Mesh geometry for a star contact spot, with a number of ray n = 32, and
height of ξ = 0.1, and with mesh size parameter of h0/r0 = 0.1
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r0

r0 + r1

Figure 3.17: Mesh geometry for a gear contact spot, with a number of dent n = 32, and
height of ξ = 0.1, and with mesh size parameter of h0/r0 = 0.1

Gear
n = 20, ξ = 0.1

Star
n = 20, ξ = 0.1

0.60 1 2 3 4

jn

Figure 3.18: BEM result of the flux through a gear- and star-shaped spots of 20 petals and
ξ = 0.1.

3.4 Conductivity of self-affine spots

3.4.1 Geometry of spots

Being inspired by shapes of contact clusters occurring in contact of random rough surfaces
(see Fig. 3.1), in this section we study contact spots of model complex shapes presenting
some randomness. The shapes under study (see Fig. 3.21) are modeled to be similar to
coffee or ink stains. To take up the Archard’s image of ”protuberances on protuberances
on protuberances” [Archard, 1957], we constructed contact-spots in a self-affine fashion
by summing-up multiple harmonics. The goal is to imitate (to some extent) realistic
contact spots occurring for surfaces with a rich spectral content and to expand the results
obtained for single-harmonic flower-shaped spots to more complex forms.

The first step to generate a spot with self-affine boundary is to introduce a periodic
perturbation function h(θ) (3.16a) as a superposition of cosines which individually could
be seen as flower-shaped spots. The summed up harmonics include all integer modes from
a fixed interval k ∈ (kl, ks) with amplitudes equal to ξk (3.16b) which decay as a power-law
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Figure 3.19: Results of the normalized flux for star-, gear- and flower-shaped spots with
respect to the normalized ”petal” parameter n′ = ξn. Least squares fit of Eq.(3.10) is also
shown.

Parameters Coefficients
Simulation ξ n ∈ a b ab

Gear 0.1 [4, 256] 0.978 0.894 0.875
Flower 0.1 [1, 256] 0.923 0.326 0.301

Star 0.1 [4, 256] 0.903 0.220 0.199

Table 3.2: Fit parameters for Eq. (3.10) for the total flux of different multi-petal shapes.

of the mode number with an exponent involving the Hurst exponent H ∈ [0, 1] ensuring
a self-affinity of the boundary. The height perturbation can be defined following these
properties as detailed in the blue-frame below:

Definition: Self-affine height perturbation

Self-affine height perturbation, h, can by defined as a continuous function of polar
coordinate θ, as:

h(θ) =
ks∑

k=kl

ξk cos (kθ + θ0
k), h(θ) = h(θ + 2π), ⟨h⟩ = 0 (3.16a)

ξk = ξ

(
k
kl

)−(0.5+H)

, (3.16b)

The randomness is provided by the phase θ0
k which follows a uniform distribution

on θ0
k ∈ [−π, π); the average of this perturbation is zero. The perturbation h(θ) thus
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constructed follows a Gaussian distribution.

The power spectral density (PSD) decays as a power law of the wavenumber with the
exponent −(1+ 2H). This PSD function appeals the definition of the spectral breadth also
known as Nayak parameter [Nayak, 1971], which is related to the ”magnification” param-
eter presenting the ratio of the highest to lowest wavenumbers ζ = ks/kl [Persson, 2001b].

The radius of a contact spot in polar coordinates r(θ) can be readily defined with the
perturbation h(θ) by simply adding it up to one 1 + h(θ) and multiplying by a factor of
the nominal contact spot radius r0 (3.17); naturally ⟨r⟩ = r0.

r(θ) = r0(1 + h(θ)) (3.17)

However, for such a construction, even if ξ < 1 is imposed, r(θ) can become negative. To
overcome this problem, a regularization should be used, as presented in the blue frame
below.

Definition: Radius definition of self-affine spot

The contour of the self-affine contact spot derives from the height perturbation h, as :

r(θ) = r0 exp (h(θ)), (3.18)

with r0 is a positive radial parameter.

The two first terms of Taylor expansion is equivalent to (3.17), but the transforma-
tion (3.18) keeps the final shape well defined without self-intersections: even for h→ −∞,
r→ 0. However, this transformation does not preserve the mean radius at r0; the radius
will change with H, ξ, kl and ζ and could be characterized by r̄ = ⟨r(θ)⟩/r0. Within this
formulation the parameter ξ plays the same role as in the study of flower-shaped spots:
here, to the first order it presents the ratio between the amplitude of the first mode to the
nominal radius. An example of two transformations (3.17),(3.18) is provided by Fig. 3.20
highlighting an example, where for transformation (3.17), the radius becomes negative.
Therefore, for this study we adopt the exponential transformation (3.18). Several exam-
ples of complex shapes generated using the presented algorithm are shown in Figs. 3.21
for different values of kl, ks and H but with the same set of random phases θ0

k . Naturally,
for increasing Hurst exponent, the spot becomes smoother.

3.4.2 Geometrical characteristics

The initial height perturbation h follows normal distribution with zero mean and standard
deviation σh, but it is not preserved by the exponential transformation (3.18). The obtained
radius follows a log-normal distribution

P(r) =
1

rσh
√

2π
exp

− ln2(r)
2σ2

h

. (3.19)

Histograms shown in Fig. 3.22 present the probability density of the spot radius con-
structed for H = 0.25, kl = 8, ks = 16 and two values of ξ = {0.05, 0.1} and computed over
1000 generated spots, the least squares fitted normal and log-normal densities are also
plotted. For small values of ξ, the distribution is very close to the normal one, whereas
for a higher value, it clearly follows the log-normal one.

The standard deviation σh or the variance σ2
h of the height perturbation h(θ) can be

computed taking into account the orthogonality of cosine functions:

σ2
h =
ξ2

2

ks∑
k=kl

(
k
kl

)−(1+2H)

(3.20)
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h = −1
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r0 exp(h(θ)) Eq. (3.18)
r0(1 + h(θ)) Eq. (3.17)

Figure 3.20: Example of self-affine spot construction for ξ = 0.25, kl = 4, ks = 32 and
H = 0.5: (a) height perturbation h(θ) and (b) resulting spot radius for linear (3.17) and
exponential (3.18) transformations.

After the transformation, the mean radius ⟨r⟩ and the variance of the height distribution
σ2

r can be found as

⟨r⟩ = r0 exp
(
σ2

h/2
)
, (3.21a)

σ2
r =

[
exp

(
σ2

h

)
− 1

]
exp(σ2

h), (3.21b)

The mean value of the radius is no longer equal to r0, but it tends to ⟨r⟩ → r0 as σh → 0.
Note that the variance could be expressed through the first terms of the Taylor expansion
as σ2

r ≈ σ
2
h + 1.5σ4

h + 7/6σ6
h + O(σ8

h), which demonstrates that for small values of σh,
σr ≈ σh with a high accuracy. The comparison of the analytical expression of the variance
Eq. (3.21b) with numerically evaluated standard deviation is presented in Appendix C.1.

The standard deviation of radius is an important geometric characteristic of the spot.
However, the standard deviation of the gradient and laplacian of the radius as well
as Nayak parameter [Nayak, 1971] could also have an effect on the conductivity of the
spot. These geometrical characteristics are related to spectral moments m0, m2 and m4
undergoes slight change in definition, recalling the initial definition.

Definition: Spectral moments for rough contour

Considering a surjective function for the radius of a contact spot, r, spectral moments
can be namely defined as:

m0 = σ
2, (3.22a)

m2 = ⟨|∇r|2⟩ =
1

2π

∫ 2π

0

(
1

r(θ)
∂r
∂θ

)2

dθ, (3.22b)

m4 =
1

2π
⟨|∆r|2⟩ =

∫ 2π

0

(
1

r2(θ)
∂2r
∂θ2

)2

dθ, (3.22c)

In the limit of infinitesimal perturbations ξ ≪ 1, we can use the following analytical
equations for the 2nd and 4th spectral moments (the 0th moment is nothing but the
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(a) kl = 2, ks = 8 (b) kl = 2, ks = 16 (c) kl = 2, ks = 32

(d) kl = 4, ks = 8 (e) kl = 4, ks = 16 (f) kl = 4, ks = 32

(g) H = 0.25 (h) H = 0.5 (i) H = 0.75

Figure 3.21: Examples of self-affine spots and their geometrical characteristics for ξ = 0.1,
kl = 2, ks = {8, 16, 32}, H = 0.25 (a,b,c) (a) r̄ = 1.0017, σ = 0.057, (b) r̄ = 1.0020, σ = 0.063, (c)
r̄ = 1.0023, σ = 0.067; for ξ = 0.1, kl = 4, ks = {8, 16, 32}, H = 0.25 for (d,e,f) (d) r̄ = 1.0019,
σ = 0.062, (e) r̄ = 1.0029, σ = 0.075, (f) r̄ = 1.0036, σ = 0.084; for ξ = 0.1, kl = 4, ks = 128,
H = {0.25, 0.5, 0.75} for (g,h,i) (g) r̄ = 1.0044, σ = 0.094, (h) r̄ = 1.0028, σ = 0.074, (i)
r̄ = 1.0020, σ = 0.063

variance of radius computed in (3.21b)):

m2 =
ξ2

2

ks∑
kl

k2
(

k
kl

)−(1+2H)

, m4 =
ξ4

2r2
0

ks∑
kl

k4
(

k
kl

)−(1+2H)

(3.23)

The comparison of Eq. (3.23) with numerically evaluated moments is presented in Ap-
pendix C.1. For flower-shaped spots, the spectral moments simplify to the following
forms:

mf
0 =

r2
1

2
=
ξ2r2

0

2
, mf

2 =
r2

1n2

2r2
0

=
ξ2n2

2
=

n′2

2
, mf

4 =
r2

1n4

2r4
0

=
ξ2n4

2r2
0

=
n′2n2

2r2
0

(3.24)

Since the normalized conductivity for flower-shaped spots was shown to depend exclu-
sively on n′ = ξn (see Eq. (3.10)), we could suggest that for a similar normalization, the
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Figure 3.22: Distribution of the radius for constructed self-affine spots for H = 0.25, kl = 8,
ks = 16 and (a) ξ = 0.05 and (b) ξ = 0.1. Least squares fit of the normal and log-normal
distributions is also presented.

main characteristic affecting the conductivity of self-affine spots will be the standard de-
viation of the gradient

√
⟨|∇r|2⟩ =

√
m2. In addition, it could be shown that the area of a

spot is an affine function of m0: A ≈ πr2
0(1 + am0), and its perimeter is an affine function

of
√

m2: P ≈ 2πr(1 + b
√

m2), where a, b are positive constants.
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Figure 3.23: Perimeter and area’s growth in function of rough moment m2 and m0
respectively

Self-affine property

Following the definition given by Meakin [Meakin, 1998], the self-affine property pertains
to the relation between the height of the perturbation and the zooming scale. In this case,
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the contour is parametrized by the angular position θ. The zooming scale can be resumed
by a phase change δθ. The self-affine property can be formulated as follows,

⟨|r(θ) − r(θ + δθ)|⟩ ∼ δθH (3.25)

This property is experimented in Fig. 3.24, for various values of H. To evaluate the height
perturbation for a decreasing δθ, we need to dispense with the upper-cutoffwavenumber
ks, to ensure that we still get height perturbation beyond any zooming scale. The mean
absolute distance between contour radius is measured over 10 random distribution, using
kl = 8 and ξ = 0.05. Then the results can be identified using a law aδθb, with a, b two
positive parameters. The low-cutoffwavenumber needs to be high enough, avoiding the
dominant macroscale results, resulting in some inconsistencies. The results of the fitting
process are represented in legend in Fig. 3.24, and we are interested in the exponent.
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〈|r
(θ
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−
r(
θ
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δθ

)|〉
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Figure 3.24: Self affine property in zooming of ink-shaped contact spot

The exponent values of δθ are consistent with the Meakin’s definition Eq. (3.25) for
low value of H. This condition is more challenging to meet for higher value of H due to
the asymptotic nature of the definition. Surprisingly, more consistent value of exponent
are obtained by only using the two lowest values of δθ displayed in Fig. 3.24. The Hurst
parameter relates to the fractal dimension of the object, like for the Weierstrass function
in which H = 2 −D.

Mesh definition

To ensure a gradual mesh coarsening towards the center of the contact patch, a geometrical
point is added in the center with a mesh parameter of h0/r0. In practice h1 is set to 0.1h0.
Two mesh examples can be seen in Fig. 3.25 and Fig. 3.26, having h1/r0 values of 0.02
and 0.012, respectively. The refinement of the mesh at the edges aligns well with the
geometry, successfully preventing element degradation, whether at peak points or within
contour recesses, as depicted in Fig. 3.26. The number of elements increases with the
length of the contour and the inverse of the mesh size at the edge h1. The contour is first
discretized linearly in P/h. This number of segments increases as the second moment m2
grows, inducing a total number of elements of 6212 for the first case Fig. 3.25, and of 34340
elements for the second geometry Fig. 3.25, consistent with the roughness growth.
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Figure 3.25: Mesh definition of a self-affine shaped contact spot with kl = 4, ks = 16, and
H = 0.75, with a mesh size parameter of h0/r0 = 0.2

Figure 3.26: Mesh definition of a self-affine shaped contact spot with kl = 8, ks = 128, and
H = 0.25, with a mesh size parameter of h0/r0 = 0.12

Normalization and result

In contrast to the study of flower-shaped spots, this study is no-longer deterministic
and requires to take into account the randomness of the studied geometries. The total
flux for a given geometry Qi, defined as an independent event, is assumed to have a
consistent average value µ(Q) and a standard deviation σ(Q) across the same set of spot-
generative parameters. This section aims to understand the average behavior based on
these parameters. To achieve this, we compute average values for numerous realizations
of spot geometries. However, this yields only an approximate value for ⟨Q⟩, which
depends on the number of realizations n. In practice, the standard deviation of the
mean value scales as σ(⟨Q⟩) = σ(Q)/

√
n. The Bienaymé-Chebyshev inequality aids in

establishing a confidence interval implying a parameter γ ∈ (0, 1): the probability to find
the mean value ⟨Q⟩ outside the interval ±σ(Q)/

√
nγ around its theoretical value µ(Q) is

smaller than γwhatever the true underlying distribution, i.e.

P
(
|µ(Q) − ⟨Q⟩| ≥

σ(Q)
√

nγ

)
≤ γ, (3.26)



140 Conductivity of Complex-Shaped Contact Spots

Equivalently, the probability is (1 − γ) to find the mean value in the confidence interval
±σ(Q)/

√
nγ. When there are 11 simulations, the interval of confidence spans approxi-

mately ±3σ(Q) with the probability of 99%, effectively encapsulating the mean value ⟨Q⟩.
In order to reduce the interval to one standard deviation with the same accuracy, i.e.
√

nγ = 1 for γ = 0.01 one would need to carry out n = 100 simulations. For n = 11 the
probability to find the mean value in one standard deviation interval, i.e.

√
11γ = 1 is

higher than ≈9%. While the Bienaymé-Chebyshev inequality provides a rigorous lower
bound, the actual accuracy of our results can overpass this conservative limit. To balance
the computational efforts and the accuracy, the number of BEM simulation results per
combination of parameters was set to n = 11, and this dataset was utilized to estimate the
mean value and the confidence interval obtained from the measurement of the standard
deviation.

An example of flux distribution obtained by fast-BEM is displayed in Fig. 3.27 for
ξ = 0.05, kl = 8, ks = 128 and H = 0.25. The normal flux remains singular at the edge
but less pronounced at troughs than at crests as shown previously for the flower-shaped
contact spot. Compared to the latter, it appears more difficult to construct a good mesh
for self-affine spots efficiently (fine mesh near the border and coarse far from border).
The mesh size was prescribed as a function of the edge curvature and as a function
of the shortest distance to the border. See zoom in Fig. 3.27, the finest used mesh reach
Ne = 34 340 elements. As previously, to employ the Richardson extrapolation, two meshes
of different density were used to obtain accurate results.

0.57 1 2 3 4

jn

Figure 3.27: Example of simulation results representing the flux distribution for a self-
affine spot with ξ = 0.05, kl = 8, ks = 128 and H = 0.25.

For the global flux analysis, geometrical characteristicsA = {⟨r⟩,
√

m0,
√

m2,
√

m4,H}:
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(1) the mean radius ⟨r⟩, (2) the standard deviation of the radius
√

m0, (3) of its gradient
√

m2, (4) of its laplacian
√

m4 and (5) the Hurst exponent describe sufficiently well the
geometry. The initial set of independent generative parameters is I = {r0, ξ, kl, ks,H} and
contains (I) radius r0, (II) amplitude of perturbation ξ, (III) lower kl and (IV) upper ks
cutoffs, and (V) the Hurst exponent H. The set A is easy to measure for any spot and
it allows to separate their effects on the total flux; the generative set I is complete and
dimensionless. Therefore, as soon as results are presented, we will carry out a sensitivity
analysis.

The first task is to normalize the total flux Q produced by self-affine spots. There
are two main options: it can be normalized by the flux of an equivalent circular contact
spot (a) of the same mean radius Q◦ = 4kU0⟨r⟩ or (b) of the same area. The first option
was selected since the mean radius also enters in the set of parameters, moreover Q◦
is equivalent to the definition of Qmin used for the flower-shaped contact spot. The
normalized total flux is thus defined by

Q′ =
Q
Q◦
=

Q
4kU0⟨r⟩

(3.27)

Therefore, since the problem does not have an internal length, we can exclude the mean
radius ⟨r⟩ from the set of parameters defining the total flux Q′ and consider two sets of
dimensionless parameters:

• Geometrical set of parametersA′ := {
√

m0/⟨r⟩,m2, ⟨r⟩
√

m4,H}

• Generative set of parameters I′ = {ξ, kl, ks,H}

By analogy with the maximal total flux Qup defined for flower-shaped spots, we could
define an equivalent upper limit for self-affine spots. It is not a good idea to define it as
the maximal radius of the self-affine spot as it could tend to infinity for very high number
of modes. However, the variance of the flower-shaped spot mf

0, Eq. (3.24), provides us
with a hint getting back the half-petal length r1 in another way, i.e. using this equation we
can express it as r1 = (2mf

0)1/2; therefore, the limit characteristic radius could be expressed
as ⟨r⟩ +

√
2m0. Thus, the difference between two flows used for normalization takes the

following form:
Qup −Q◦ = 4kU0

√
2m0

This term entails the definition of a normalization for rough contact spot, such as self-
affine contact spot.

Model: Normalization for self-affine spot

Recalling the renormalization between zero and one as was used for the flower-shaped
spots, we could define the renormalized flux as:

Q′′ =
Q −Q◦

Qup −Q◦
=

Q
4kU0

√
2m0
−
⟨r⟩
√

2m0
(3.28)

The total flux normalized according to Eq. (3.27) is presented in Fig.3.28 for all
simulated self-affine spots. These spots are constructed by changing the lower cutoff
kl = {2, 4, 8} and for four values of the upper cutoff ks = ζkl with the magnification ζ =
{4, 8, 16, 32}. The Hurst parameter H takes the values H = {0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75}.
The colors are used to distinguish the 3 sets of the results according to different kl. In each
color set, the results are distinguished by their marker style according to values of mag-
nification ζ, moreover, the higher the ζ, the darker the color. Along every result-curve
the Hurst exponent H changes as shown by the arrow: the smaller the H, the higher the
flux. The curves are entwined together, but they seem to follow the same trend. Plotting
the data with respect to geometrical parametersA′ offers a better representation than the
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Figure 3.28: Normalized flux (3.27) of self-affines spots: for kl = {2, 4, 8}, ζ = {4, 8, 16, 32},
H = {0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75} H = {0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75}. The mean normal-
ized flux is plotted with a marker and shaded around according to the confidence interval
defined for γ = 0.05 (with a rate of confidence of 95% ) .

use of the generative set of parameters I′. The variation in slope seems to be controlled
by parameter ζ = ks/kl: increasing ζ increases the average slope with respect to

√
m2/⟨r⟩

and decreases the average slope with respect to
√

m2 and ⟨r⟩
√

m4.
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Figure 3.29: Renormalized flux, Eq. (3.28) of self-affine spots: for kl = {2, 4, 8}, ζ =
{4, 8, 16, 32}, H = {0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75}. The mean normalized flux is plotted with
a marker and shaded around according to the confidence interval width of ±1.34σ and of
95% of accuracy; vertical lines and numbers correspond to spots shown in Fig. 3.30.
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The results of the renormalized flux Eq.(3.28) with respect to
√

m2 and ⟨r⟩
√

m4 are pre-
sented in Fig.3.29. However, the role of the fourth moment in the form ⟨r⟩

√
m4 seems to

be strongly correlated with
√

m2 and does not bring much additional information. The
lack of simple dependency of the normalized flux with respect to geometrical characteris-
tics pushes us to suggest an alternative normalization. The shown results seem to depend
strongly on kl parameter. By exploring a wider spreading of

√
m2 for different kl, we hope

to easily identify their influence, which is the objective of the following sections.
To provide a visual geometrical interpretation in the flux variation (see Fig. 3.30)

related to geometrical characteristics of self-affine spots, we present particular shapes
along with the values of corresponding geometrical characteristics and of the total flux in
Table 3.3, the location of these particular spots is also highlighted in Fig. 3.29. The pairs
{S1,S2}, {S3,S4} and {S5,S6} have close values of

√
m2. The difference between the flux

of spots S5 and S6 highlights the fact that the flux does not depend only on the second
moment. Nevertheless, this could be seen as a second order effect compared to that of
√

m2. Spots S7 and S8 are among the ”roughest” spots and possess the highest flux.

S1
kl = 2, ks = 32

H = 0.25√
m0/〈r〉 = 0.0664

S2
kl = 4, ks = 32

H = 0.60√
m0/〈r〉 = 0.0664

S3
kl = 2, ks = 64

H = 0.30√
m0/〈r〉 = 0.0657

S4
kl = 4, ks = 128

H = 0.70√
m0/〈r〉 = 0.0645

S5
kl = 4, ks = 128

H = 0.40√
m0/〈r〉 = 0.08

S6
kl = 8, ks = 128

H = 0.75√
m0/〈r〉 = 0.0852

S7
kl = 8, ks = 128

H = 0.25√
m0/〈r〉 = 0.1262

S8
kl = 8, ks = 256

H = 0.25√
m0/〈r〉 = 0.1317

Figure 3.30: Examples of self-affine spots with corresponding geometrical characteristics
and resulting total flux; the corresponding data points are highlighted in Fig. 3.29.

Results with renormalized standard deviation

As presented in Figs. 3.28 and 3.29, the results are clustered with respect to kl. To have
more control on geometrical characteristics, we renormalize the generative function h(θ)
in order to prescribe its dimensionless standard deviation σh =

√
m0,h (see Eq. (3.20)):

h(θ) =

√
2m0,h

s

ks∑
k=kl

ξk cos (kθ + θ0
k), s =

ks∑
k=kl

ξ2
k (3.29)

with ξk defined by Eq. (3.16b). The exponential transformation from h(θ) to radius
r(θ) (3.18) remains intact. Then, for the normalized generative parameters we have:
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ParametersA′ Parameters I′

Spot # Q′′
√

m0/⟨r⟩
√

m2
√

m4⟨r⟩ ξ kl ks H
S1 0.151 0.0664 0.658 14 0.05 2 32 0.25
S2 0.172 0.0664 0.666 12.7 0.05 4 32 0.6
S3 0.173 0.0657 0.958 39.8 0.05 2 64 0.3
S4 0.184 0.0645 0.972 63.8 0.05 4 128 0.7
S5 0.317 0.0800 2.06 163 0.05 4 128 0.4
S6 0.380 0.0852 1.97 130 0.05 8 128 0.75
S7 0.644 0.126 5.12 446 0.05 8 128 0.25
S8 0.749 0.182 8.77 1493 0.05 8 256 0.25

Table 3.3: Parameters for spots shown in Fig. 3.30 and the resulting total flux.

I
′′ = {

√
m0,h, kl, ks,H} and for the geometrical ones we still have A′. The main goal for

such a choice is to uncorrelate
√

m0/⟨r⟩ and
√

m2 and thus to level down m0 for kl = 8,
and to level it up for kl = 2. Note also that

√
m0/⟨r⟩ ≈

√
m0,h for small values of the latter,

see (3.21b) and its Taylor expansion.
The results of this set of simulations for the renormalized flux (3.28) are presented in

Fig. 3.31 with respect to the standard deviation of the radius gradient
√

m2; lower cutoffs
kl = 2 (orange circles and red squares) and kl = 8 (green crosses and cyan triangles) were
used. In addition, different colors correspond to different magnifications: ζ = 4 for red
squares and cyan triangles, ζ = 8 for orange circles and green crosses. The Hurst exponent
takes three values H = {0.25, 0.50, 0.75}. For the same value of

√
m0,h ≈

√
m0/⟨r⟩, thanks

to the variation of the Hurst exponent, the value of
√

m2 varies within a certain interval,
such data points are connected by a line. Every set of such lines (of the same shade)
align along their master curve. Such results demonstrate that even though the standard
deviation

√
m0/⟨r⟩ controls the thermal flux to a large extent, the standard deviation of

the gradient
√

m2 also influences the result. This conclusion is possible since
√

m2 does
not enter in the flux normalization (3.28). The flux increases with respect to both

√
m0/⟨r⟩

and
√

m2 as well as with respect to ⟨r⟩
√

m4 because of the strong correlation of the latter
with the second moment. For an equivalent

√
m2, the flux is higher for spots with a lower

magnification ζ.
To provide a geometrical meaning to these results, a coupled pairs of self-affine spots

{S1,S2}, {S3,S4}, {S5,S6}with different spectral content but similar value of m2 are displayed
in Fig. 3.32 and are highlighted in Fig. 3.31 and in Table 3.4. Remarkably, the three foremost
right lines (d) in the figure seem to continue each other. The spots {S5,S6} well illustrate
this link: they in fact have the same number of modes, but different H and m0,h.

ParametersA′ Parameters I′′

Spot # Q′′
√

m0/⟨r⟩
√

m2
√

m4⟨r⟩
√

m0,h kl ks H
S1 0.189 0.100 0.507 5.10 0.100 2 16 0.5
S2 0.213 0.143 0.515 2.84 0.141 2 8 0.5
S3 0.510 0.0995 1.56 33.6 0.100 8 32 0.5
S4 0.476 0.0705 1.56 61.9 0.005 8 64 0.5
S5 0.665 0.0997 2.62 114 0.100 8 64 0.25
S6 0.666 0.141 2.61 94.1 0.141 8 64 0.75

Table 3.4: Parameters for spots shown in Fig. 3.32 and the resulting total flux. The spots
are ordered according to increasing

√
m0.

Finally, we would like to point out that (1) the influence of
√

m0 is ultimately handled
by normalization; (2) the results are rather well clustered along a simple trend line in
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Figure 3.31: Results for the renormalized total flux eq. (3.28) of self-affine spots with re-
spect to standard deviation of the radius gradient

√
m2 obtained with controlled standard

deviation
√

m0,h ≈
√

m0/⟨r⟩.

terms of m2, (3) but clearly there is a dependence on ζ. At the same time, the shape of the
trend is very similar to what was observed for multi-petal spots and we recall that

√
m2 is

an analogous parameter to n′ used there. Qualitatively the slope of the normalized total
flux with respect to

√
m2 decreases suggesting an ultimate saturation as in multi-petal

shapes (see Figs. 3.12 and 3.19). For the extra generative parameter ζ ∈ I′′ to which some
dependence is observed, it should be expressed through spectral moments which could
be easily measured for arbitrary shape, it will be handled in the following subsection.

Conductivity model

This study aims to quantify the flux transmitted through a spot of complex shape. While
the numerical results encompass a broad parametric space, they are not readily compre-
hensible in their full scope and pose challenges for generalization. We thus make an
attempt to construct a general phenomenological model relying on geometrical charac-
teristics and inspired from the model used for flower-shaped spots.

Covariance matrix The first simple step is the construction of a covariance Ci j matrix of
the normalized flux and all available normalized parameters x̃i:

Ci j = ⟨x̃ix̃ j⟩, x̃i =
xi − ⟨xi⟩

σ(xi)
, (3.30)

where, as previously ⟨xi⟩ denotes the average value, and σ(xi) denotes its standard devia-
tion. The covariance matrix constructed based on all available simulation data is provided
in Table 3.5. There is a strong correlation between Q̃′, Q̃′′ and parameters k̃l, ˜√

m0/⟨r⟩,
˜√m2 and ˜√m4⟨r⟩. However, because of the strong correlation, the effect of the moment

m4 is hard to isolate from the effect of m2. Very small correlation of the flux is found with
ξ̃, H̃ and α̃; slightly more correlation exists with ζ̃. According to the covariance matrix,
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S1
kl = 2, ks = 16

H = 0.50√
m0/〈r〉 = 0.0315

S2
kl = 2, ks = 8

H = 0.50√
m0/〈r〉 = 0.0446

S3
kl = 8, ks = 32

H = 0.50√
m0/〈r〉 = 0.1

S4
kl = 8, ks = 64

H = 0.50√
m0/〈r〉 = 0.071

S5
kl = 8, ks = 64

H = 0.25√
m0/〈r〉 = 0.101

S6
kl = 8, ks = 64

H = 0.75√
m0/〈r〉 = 0.142

Figure 3.32: Comparison of pairs of self-affine spots for the same
√

m2 and for different
values of

√
m0/⟨r⟩. To simplify the reading of the parameters, they are equivalently

displayed in Table 3.4.

the Hurst exponent seems to be negligible, which is surprising in the light of our previous
results. In conclusion, we could confirm that the covariance matrix and eventual Prin-
cipal Component Analysis, which access only first order correlations, present too coarse
tools to determine subtle non-linear correlations. Finally, since generative parameters I
are strongly linked to the method of spot generation, in constructing our model we will
focus exclusively on geometrical parametersAwhich could be measured for an arbitrary
shape.

Phenomenological model Analyzing the obtained results, we noticed a weak logarith-
mic dependence of the total normalized flux on the magnification parameter ζ = ks/kl. A
relatively simple phenomenological model including this parameter could be constructed,
but since this parameter is generative, it is of no help for a general case. Nevertheless,
it is clear that the magnification ζ is intimately related to another geometrical parameter,
known as Nayak parameter [Nayak, 1971, Yastrebov et al., 2017b] α = m0m4/m2

2 (see co-
variance matrix in Table 3.5). Remark that from Eqs. (3.24) for the flower-shaped spot,
the Nayak parameter is simply 1 so, consistently it does not enter the phenomenological
equation for the conductivity of such simple forms Eq. (3.10). A rigorous link between
the generative parameter ζ and the geometrical parameter α can be provided, see Ap-
pendix C.1. The concrete form of this link was not used but we could notice that another
geometrical characteristic, namely the Hurst exponent H is involved, regardless the results
of the covariance analysis. So, the ultimate set of geometrical dimensionless parameters
is chosen to be:

A
f =

{√
m0/⟨r⟩,

√
m2,H, α

}
≡

{
σ/⟨r⟩,

√
⟨(∇r)2⟩,H, α

}
(3.31)
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Q̃′ Q̃′′ ξ̃ k̃l ζ̃ H̃ ˜√
m0/⟨r⟩ ˜√m2

˜√m4⟨r⟩ α̃
Q̃′ 1 0.9 0.1 0.7 0.3 -0.2 0.7 0.9 0.7 0.06
Q̃′′ - 1 -0.04 0.8 0.4 -0.2 0.7 0.9 0.7 0.1
ξ̃ - - 1 -0.2 -0.2 0.1 0.7 -0.06 -0.07 -0.08
k̃l - - - 1 0.06 0.0 0.4 0.7 0.4 -0.03
ζ̃ - - - - 1 0.0 0.06 0.5 0.5 0.9
H̃ - - - - - 1 -0.2 -0.2 0.3 0.2
˜√

m0/⟨r⟩ - - - - - - 1 0.6 0.4 -0.05
˜√m2 - - - - - - - 1 0.9 0.2
˜√m4⟨r⟩ - - - - - - - - 1 0.3
α̃ - - - - - - - - - 1

Table 3.5: Covariance matrix of normalized flux and all normalized parameters according
to Eq. (3.30).

Model: Interpolation of self-affine contact spot

The results in flux are identified by the following phenomenological model, encom-
passing the effects of m2, H and α :

Q′′ = a
[
1 −

1
b
√

m2 + 1

]
(1 + cH)

{
1 +

d
eα f + 1

}
(3.32)

With a, b, c, d, e, f five positives parameters.

The core term in square brackets in Eq.(3.32), is equivalent to the phenomenological
law obtained for multi-petal spots, see Eq. (3.10).

In addition, the effects of H and α enter in the equation through the product of linear
and non-linear functions, respectively (normal and curly brackets). The former is the
increasing function of H and the latter is a decreasing function of α. Both terms provide a
slight factor adjustment: in the interval (1, 1+c) for H ∈ (0, 1), and in the interval (1+d/(1+
e), 1) for α ∈ (1,∞). Due to a weak dependence on the Nayak parameter, we made an
attempt to integrate it through a logarithmic dependence, like in [Yastrebov et al., 2017b],
but the constructed model could not fulfill the physical consistency, i.e. ensure always
positive normalized flux Q′′ which increases monotonically for increasing α and ζ (see
Appendix C.2). This physical consistency could be formulated as an inequality for the
exponent parameter f :

f ≥
1 −H

2H
.

The issue with this bound is that it diverges for H → 0. Therefore, we deliberately
fixed the minimal value of the Hurst exponent that we took into consideration H ≥ 0.25,
providing the following condition for the exponent f ≥ 1.5. A further study should be
carried out to formulate a physically consistent phenomenological model for the flux for
spots with lower values of the Hurst exponent.

Combining Eqs.(3.32) and (3.28), the final equation for the flux is obtained as:

Q = Q◦

(
1 + a

√
2m0

⟨r⟩

[
1 −

1
b
√

m2 + 1

]
(1 + cH)

{
1 +

d
eα f + 1

})
(3.33)

The coefficients are found by the least square fit of all simulation results, see Table 3.6.
Results of the fitting law are shown in Fig. 3.33 separately for two sets of simulation data:
in Fig. 3.33(a) for the set of contact spots parametrized by Eq.(3.16a), and in Fig. 3.33(b)
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for those defined by Eq. (3.29). A relative error could be defined as:

E =
1
N

N∑
i=1

|Qi −Qfit
i |

Qi
, (3.34)

and for the fit coefficients the error reduces to E = 4.3 %. The Pearson’s correlation factor
for the set of identified parameters is equal to ρ = 0.9976.

Parameter a b c d e f
Value 0.968 0.255 0.0867 4.38 5.49 1.50

Table 3.6: Parameters of the phenomenological model (3.32),(3.33) optimized through
least square fit and resulting in relative error E = 4.3 % and Pearson’s correlation factor
ρ = 0.9976.

The high concentration of data for low
√

m2 might have introduced biases during the
fitting process. Nonetheless, the obtained model captures well all the trends observed in
our simulation results, notably, it represents well the flux of the roughest contact spots
with highest values of

√
m2 and α. In summary, the obtained model could be seen as

a generalization of the initial model formulated for multi-petal shapes (flower-, star-
and gear-like). The ultimate model integrates the combined effects not only of standard
deviation σ =

√
⟨(r − ⟨r⟩)2⟩ =

√
m0 and

√
⟨(∇r)2⟩ =

√
m2 but also of more subtle shape

parameters such as the Nayak parameter α and the Hurst exponent H, which are related
to bandwidth length and fractal dimension, respectively.

As a by product, the form of the phenomenological model (3.33) permits us to access
the fractal limit of the self-affine spots, when the magnification ζ = ks/kl → ∞, then a
very simple form for the limit flux could be obtained, depending only on the standard
deviation of the spot and its Hurst exponent:

lim
ζ→∞

(Q) = Q◦

(
1 + a

√
2m0

⟨r⟩
(1 + cH)

)
= 4kU0

(
⟨r⟩ + a

√
2m0 (1 + cH)

)
. (3.35)

As a first order approximation, one could use the following value 4kU0

(
⟨r⟩ +

√
2m0

)
which remains relatively accurate due to the factor a(1 + cH) having minimal variation,
remaining within the range (0.968, 1.052). In general, this fractal limit remains speculative
and could be seen as our conjecture as for the case of multi-petal shapes.

3.5 Two-mode spots

In the previous section, the influence of the spectral content on the flux of self-affine spots
was identified extending the study of multi-petal geometries. In this section, we aim to
give additional insights into this aspect, constructing a two-mode geometry. Our goal is
to explore, from a deterministic perspective, the interplay between these modes.

Definition: Radius of flower-shaped with two modes

The radius function of a flower-shaped contact spot with two modes is constructed by
applying two cosine profiles upon a circular contact spot, as follows:

r(θ) = r0 + r1 cos (n1θ) + r1

(n1

n2

)H+0.5
cos (n2θ) (3.36)

With n1,n2 two integer parameters, denoting the number of petals related to the first
and the second mode, respectively.
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Figure 3.33: Simulation results for the normalized flux through self-affine spots (color
markers and interpolation lines) and phenomenological prediction (smaller black markers
of the same type). Upper row: initial set of data (1), lower raw: data with controlled
standard deviation (2). The letters in the second series refer to those defined in Fig. 3.31.

The mean radius is equal to r0, the petal’s length parameter ξ = r1/r0. This incor-
porates two sets of parameters that describe the height and number of petals: (r1,n1)
and (r2,n2). The height of the second mode r2 is defined by the Hurst parameter H, as
r2 = r1(n1/n2)H+0.5. The magnification-like parameter is defined as the ratio of the number
of petals of these two modes ζ = n2/n1. Examples of such a two-mode shapes are pre-
sented in Fig. 3.34 for different values of ζ, but constant parameters n1 = 4 and H = 0.75.
Note that r2 experience a power-law decrease as n2 grows: the bigger the Hurst exponent
the more pronounced this decrease is.

The expressions for the standard deviation σ and the second moment m2 are derived
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ζ = 2 ζ = 8 ζ = 16

Figure 3.34: Profiles of contact spots with n1 = 4, and r1/r0 = 0.1, for ζ ∈ {2, 8, 16}, with
H = 0.75

as follows:

σ2 = m0 =
r2

1

2

(
1 + ζ−(2H+1)

)
, m2 =

r2
1n2

1

2r2
0

(
1 + ζ−(2H−1)

)
(3.37)

The standard deviation decreases with H and ζ. The second moment may increase for
increasing ζ only for H ≤ 0.5.

3.5.1 Results and modeling

The resolution of this two-mode problem was carried out by BEM. Some examples of the
normal flux result are presented in Fig. 3.35, simulating a 1/8th of the contact spot. Once
again the final result in flux are computed by extrapolation and then normalized following
the expression given by Eq. (3.9). An approximate model can be constructed for the
normalized flux, assembling the normalization induced separately by every mode even
though rigorously speaking the superposition principle does not hold in this situation.

Model: ”Superposition” of two-mode fluxes

The normalized flux is modeled as if it would result from a superposition of two
modes with normalized number of petals n′1 and n′2, as follows

Q′f ,2 = Q′f (n
′

1) +Q′f (n
′

2) (3.38)

This model aims to provide a comparison with numerical results. The function Q′f
reuses the model define by Eq. 3.10, with parameters found by BEM fitting, see Table. 3.1.
Of course, it is clear that the model is non-linear and Q′f (2n′) , 2Q′f (n

′). However,
surprisingly, the comparison between numerical results and this simplified model reveals
to be a very good fit as shown in Fig.3.36 for three Hurst exponents H = {0.25, 0.5, 0.75}.
Note that the flux decays surprisingly slowly to the limit ζ → ∞ especially for lower
values of H, shown as a thick blue dashed line.

Initially, for n2 close to n1, there is a slight difference between the numerical results
and the model Eq. 3.38. However, as n2 increases, this difference diminishes since the
shape perturbation induced by the second mode diminishes too. Overall, the two sets of
results follow the same tendency, even capturing the growth for H = 0.25 for small values
of n2. However, we have no clue about the peak found in numerical results for n2 = 8.
This could possibly arise from the exact superposition of the second mode over the first,
leading to a more pronounced shape perturbation.
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Figure 3.35: The simulated normal flux in two-mode spot with n1 = 4 and ξ = 0.1 and
n2 ∈ {8, 16, 32}.
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Figure 3.36: Normalized flux for two-mode spot: BEM results (circles) compared with
a simplified superposition model (3.38) (dashed lines) with n1 = 4 and ξ = 0.1 for H
parameter {0.25, 0.5, 0.75}. The thick dashed line represents the normalized flux for the
low mode n1 = 4, ξ = 0.1.

This simplistic model offers a new insight from the geometric decomposition of com-
plex shapes. It provides a relatively good approximation even for a square contact spot,
experiencing an infinite spectral content. If the square shape is decomposed into a finite
number of modes N = 128 the sum of contributions from every mode results in an over-
estimation of the numerically computed flux by 7.98%. Such an overestimation arises
from the lack of interaction between modal flux perturbations, which is the source of the
nonlinearity.

3.6 Koch snowflake

The effect of the fractal dimension has motivated us to undertake a brief study on a Koch
snowflake. This shape is a truly fractal deterministic shape, constructed iteratively through
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a series of stages N. The initial stage is an equilateral triangle. With each subsequent
stage, every side of the shape from the previous stage is divided, and an outward triangle
is added in the center of each side, see Fig. 3.37.

The perimeter of the snowflake increases by a factor of 4/3 by every increment of stage,
describing an unbounded sequence. Conversely, the area describes a bounded increasing
sequence converging to a limit of 8/5A0, with A0 the area of the initial equilateral triangle.
Some examples for such geometry are presented Fig. 3.37 for various stages. All theses
snowflakes are enclosed within a circle. Subsequently to these geometric features, the
fractal dimension can be defined using the homothety dimension, which pertains to
D = log (4)/ log (3) ≈ 1.26.

N = 1 N = 2 N = 3

N = 4 N = 5

Figure 3.37: Collection of Koch snowflake, at different stage n = {1, 2, 3, 4, 5}

Mesh geometry

The Koch snowflake-shaped spot is modeled only by a 1/6-th of its section, as presented
in Fig. 3.37. One example of such mesh definition is presented in Fig. 3.38, at the fifth
stage. Similarly to all the previous contact spots, the mesh is refined on the edge. Even
though the element size diminishes rapidly with fractal stages, the triangular tessellation
aligns well with the contour’s shape. The mesh example presented in Fig. 3.38 is built
both using h0/r0 = 0.05 and h1/r0 = 0.005, for the mesh parameters set at the tip element,
and at contour edge, respectively.

Flux

The solution to the conduction problem for these shapes is carried out by BEM. Recalling
the study of star, gear-shaped contact spot, one can establish a normalization similar to
Eq. (3.9). The radius for the circular contact spot, defining the flux Q◦, is set equal to the
mean radius r̄. For the definition of Qup, the radius is given by the surrounding circle.
The total flux is then extrapolated using two distinct mesh sizes: h0/r0 = {0.1, 0.05}with a
consistent refinement on the edge. With the finest mesh size, it ensures multiple elements
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r0

Figure 3.38: Mesh definition for a Koch snowflake at the stage 5, with h0/r0 = 0.05

within the smallest triangular boundary pattern, at the ultimate considered fractal stage.
The results are presented in Fig. 3.39 for different fractal stages.
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Figure 3.39: The total normalized flux for Koch snowflake spots, for various fractal stages
N = {1, 2, 3, 4, 5}
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As seen in Fig.3.39, the normalized flux converges to an upper limit, akin to what was
observed for the multi-petal contact spots. Clearly, the stage number is not analogous to
the m2 parameter seen with the flower shape. However, the similarity is clear since the
compactness of the shape diminishes with fractal stages. The method of constructing this
fractal shape highlights that the minor shape alterations to the boundary does not really
affect the overall flux and we anticipate that in the fractal limit, the flux will converge to
some value:

lim
N→∞

Q′ = lim
N→∞

Q −Q◦
Qup −Q◦

≈ 0.65.

3.7 Conclusion

In establishing the bounds on the conductivity of rough contacts [Barber, 2003], Barber
argued that ”its greatest potential probably lies in establishing the maximum effect of
neglected microscales of roughness in a solution of the contact problem for bodies with
multiscale or fractal roughness.” In our contribution, we focus on these ”microscales”
and make an attempt to assess their quantitative effect on the conductivity. If we repeat
after Samuel Karlin that ”the purpose of models is not to fit the data but to sharpen the
questions”, this study indeed permitted to sharpen few of them.

3.7.1 Flower-shaped spots and other simple forms

For simple multi-petal shapes: flower-, star- and gear-like conductive spots we could
obtain the following results. In the limit of the infinite number of petals, rays, and teeth,
the conductivity seems to converge to different finite limits. The bigger the area, the
higher its limit, therefore the gear-like shapes have the highest and star-like shapes the
lowest conductivity. We determined these limits by an extrapolation of a constructed
phenomenological model, and these results should be interpreted as a first guess. Hence,
the first question is whether a conductivity of such spots could be determined analytically
in the limit of infinite number of petals, rays or teeth? Expectedly, these limits are
bounded between the conductivity of a circle with the average radius r0 and a circle
with the radius equal to the maximal extent of these spots r0(1 + ξ). On the other
hand, in this limit, the boundary of the conducting spot could be seen as fuzzy, with the
same geometrical bounds but different ”fuzziness” types, which surprisingly significantly
affects the limit. The physical and mathematical limits could be different here because of
radiative and eventually convective heat exchanges or because of tunneling effects. The
physical conductivity should probably hit the upper limit Qup defined by the conductivity
of a circular spot of radius r0(1 + ξ).

3.7.2 Conductivity of self-affine spots

In terms of conductivity of self-affine random spots, based on numerous simulation re-
sults and being inspired by the phenomenological model constructed for a flower-shaped
spot, we suggested a phenomenological model including four parameters: (1) mean ra-
dius, (2) its standard deviation (or the square root of the zero-th spectral moment), (3)
its gradient’s standard deviation (or the square root of the second spectral moment), (4)
its Hurst exponent and (5) its Nayak parameter. The model is applicable in a relatively
large interval of parameters and properly describes the change in flux with these geo-
metrical parameters. It is worth noting that the model shows an interplay between the
second spectral moment and a specific combination of the Hurst exponent and the Nayak
parameter. The conductivity increases with the former and decreases with the latter. In
the generative model employed in this study, under increasing magnification, the second
spectral moment and the Nayak parameter increase in such a way that the flux is always
a monotonically increasing function (by construction). Nonetheless, it is conceivable to
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design shapes where these two parameters are independently controlled. Consequently,
the second question arises: could an increase in the Nayak parameter actually lead to a re-
duction in flux in practical scenarios? An affirmative response would intriguingly imply
the existence of an optimal Nayak parameter (linked to an ideal shape) that maximizes
conductivity. However, such a scenario seems rather unlikely.

Similar to our analysis of simple multi-petal shapes, the phenomenological model en-
abled us to determine the ultimate fractal limit for the conductivity of self-affine shapes
as the magnification ζ approaches infinity. This limit depends solely on the mean ra-
dius, standard deviation, and only weakly on the Hurst exponent. However, as in our
earlier findings, this identified limit should be regarded as a preliminary estimate. The
mathematical question of the conductivity of self-affine shapes in the fractal limit remains
open for further exploration. From a physical perspective, similarly to observations with
flower-shaped spots, the diffusive nature of the boundary could provide a more practical
approach to determining this limit.

3.7.3 Contact spots between rough surfaces

Concerning the conductivity of contact spots formed between randomly rough surfaces
in contact, we can highlight several pertinent findings. The non-simple connectedness
of these spots, characterized by non-contact areas surrounded by contact ones, does
not appear to significantly affect overall conductivity. However, the complexity of their
shapes undoubtedly influences this conductivity. Drawing from our analyses of relatively
simpler cases, a set of parameters proves effective for estimating conductivity using the
developed phenomenological models (Eqs. (3.32) and (3.33)). These parameters include
(1) average radius, (2) standard deviation, (3) second spectral moment, (4) Hurst exponent,
and (5) Nayak’s parameter of the outer contour. But this model should be applied to
realistic contact spots with caution. In most cases, such spots cannot be parametrized
through a function in polar coordinates r(θ) and, in general, polar coordinates do not make
much sense for complex spots (see Fig. 3.1). Instead, a more general parametrization using
convective coordinates defined along the outer boundary is needed. In this study, by
limiting ourselves to relatively simple geometrical models, we left more realistic contact
shapes for future research.

3.7.4 Supplementary work, two-modes spots, and Koch snowflake

In order to confirm the observation made on self-affine shapes, we expanded our research
on other simple shapes, such as the two-mode spot. Ultimately, this study gives new
insights on the interplay of the modes, and yields a new model for the normalized flux.
However this model tends to overestimate the flux, which aligns with our previous
observations regarding the Nayak’s parameter influence.

In the meantime, to bolster our findings on the fractal limit, we study spot shaped
like Koch snowflake. These spots, bearing a resemblance to star-shaped spots, reinforce
the idea of a fractal limit for the conductivity, even as the perimeter undergoes continued
expansion.

3.7.5 Conclusion

The conductivity of contact spots formed between randomly rough surfaces in contact,
we could argue that their non-simple connectedness (presence of non-contact areas sur-
rounded by contact ones) should not noticeably affect the overall conductivity. However,
the complexity of the shape of contact spots should necessarily affect this conductivity.
Following our development for relatively simple cases: (1) the average radius, (2) its stan-
dard deviation, (3) the second spectral moment and (4) Nayak’s parameter of the outer
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contour of the spot serve a good set of parameters to estimate the conductivity following
the developed phenomenological model (3.32), and to sustain a model for fractal limit.
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Résumé du Chapitre IV
Dans cette dernière partie le problème de la résistance de constriction est élargi au
cas des aires réelles de contact. Cette étude vise à étudier l’influence de la mor-
phology des aires réelles de contact sur la résistance de constriction. Cette partie
sera divisée en deux sous-parties, avec une première étude consacrée à la résistance
produites par des aires multi-taches. Les calculs seront conduit par BEM, et com-
parés aux resultats du modèle de Greenwood de la résistance de constriction. Dans
un second temps, l’étude se portera sur l’étude de la résistance de constriction is-
sus d’aire réelle de contact impliquant le contact entre surfaces rugueuses. Nos
résultats BEM seront comparés à ceux issus de l’utilisation d’une implémentation
spectrale des Éléments de Frontière (nommé FFT-BEM). Ce dernier outil nous per-
mettra de résoudre le problème mécanique des surfaces rugueuses en contact. La
présence d’oxide sera également considérée, réduisant la surface de conduction,
et augmentant la résistance de constriction. Les calculs FFT-BEM sont réalisé avec
l’utilisation du code Tamaas.

Abstract for Chapter IV
In this final chapter, the problem of constriction resistance is expanded to include
real contact areas. This study aims to investigate the influence of the morphol-
ogy of real contact areas on constriction resistance. It contains two main parts, the
first one is dedicated to the resistance produced by multi-spot areas. BEM simula-
tions compared with the results of an extended constriction resistance Greenwood
model. In the second part, the study focuses on the resistance arising from real
contact areas produced by the contact between rough surfaces. Our BEM results
will be compared with those obtained with FFT-BEM (Tamaas library), whose ac-
curacy for conductivity problem is also assessed here. FFT-BEM allows us to solve
the mechanical problem of rough surfaces in contact. The presence of insulating
oxide films in the contact interface is also considered. They reduce the conduction
surface and increase the constriction resistance. A preliminary version of a phe-
nomenological conductivity model is derived and a new definition for the Holm’s
effective radius is proposed.
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4.1 Introduction

The growth of the real contact area between rough surfaces results in a complex morphol-
ogy of contact cluster, as could be seen in Fig. 3.1 adapted from [Yastrebov et al., 2015a].
At light loads, the real contact area yields the formation of small separated contact
spots, which aligns well with the assumption made by Holm [Holm, 1967] and Green-
wood [Greenwood, 1966], based on the observation by Dyson [Dyson and Hirst, 1954].
The constriction resistance arises from conduction through these sparsely distributed
contact spots. In the light of the equivalence between conductivity and elasticity rig-
orously established by Barber [Barber, 2003], the results obtained for the elastic rough
contact has been substantially studied giving insights into the problem of conduc-
tion [Pastewka et al., 2013, Papangelo et al., 2017, Joe et al., 2022]. Different numerical
methods have been successively used to study the elastic problem between rough surfaces
in contact: FEM [Hyun et al., 2004, Pei et al., 2005], FFT-BEM [Yastrebov et al., 2015a,
Monti et al., 2022] or using molecular simulation [Pastewka and Robbins, 2016].

This section delves into the problem of constriction resistance arising due in contact
between rough surfaces. This study begins with the study of constriction resistance due
to multi-spots contact of relatively simple shapes, where BEM results will be compared
with Greenwood model (Section 4.2). In the second part, the study focuses on constriction
resistance of more complex conductive geometries produces by accurate simulations of the
mechanical contact. In addition, we will take into consideration the effect of a contaminant
agent or fully isolating oxide clusters randomly distributed in the contact interface. For
the majority of this oxide-study we used Tamaas software [Frérot et al., 2020], an efficient
FFT-BEM implementation for contact problems. In addition, the FFT-BEM and our fast-
BEM implementations will be compared on several academic examples and in the study
of the oxide-contaminated rough surface in contact.

4.2 Multi-spot contact

Generally, the roughness is superposed on an average shape of the body, therefore
when brought in contact, the contact area is localized and separate contact spots
gather within a single or several macro-clusters. Considering, for example, a rough-
ness on a parabolic profile, the density of contact spots aligns with the pressure solu-
tion of the Hertzian contact [Greenwood and Tripp, 1967, Pastewka and Robbins, 2016,
Yastrebov, 2019]. However, beyond a certain load, or for small enough separation dis-
tance, Greenwood [Greenwood, 2007] reasonably pointed out that the coalescence of
initially separate contact spots must be taken into account. And since near the coales-
cence of contact spots their shapes loose convexity [Yastrebov et al., 2014], simple elliptic
shapes cannot serve a good representation of contact areas. Nevertheless, assuming
separated contact spots, Greenwood proposed a simple formula for the constriction re-
sistance [Greenwood, 1966]. This section aims to assess the accuracy of this formula for
the conductivity problem involving non-circular contact spot.

4.2.1 Geometrical construction

We will mimic the growth of the real contact area under load, using separated flower-
shaped contact spots which were explored in detail in the previous chapter. Some ex-
amples are presented Fig. 4.1. Constructed contact spots will be randomly spread within
a nominal radius following the picture drawn in [Greenwood, 1966] but not the one
from [Greenwood and Tripp, 1967]. The spots have random radii following a truncated
normal distribution with the mean radius parameter r◦ and a standard deviation σ. For
the flower-shaped spots both the number and the height of petals are defined propor-
tionally to the spot’s size. The spots are included in a macro-cluster of radius R◦, so the
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contact is characterized by the ratio of this macro-cluster to the average radius of the spot:
R = R◦/r◦. The methodology for creating these multi-spot clusters is explained in detail
in the colored box provided below.

Method: Construction of multi-spot clusters

The spots with a random radius r (truncated normal distribution r > rmin) are dis-
tributed randomly (Matérn hard-core point processes) within a circular zone of radius
R◦. The number of petals is proportional to r, following n f = ⌈η f r/r◦⌉, but bounded
at a maximum number of petal n f

max. In a similar manner, the petal’s height is also
proportional to the radius as r f

1 = ρ
f r/r◦. A check is performed to measure the gap dis-

tance between the new spot and the existing others, to maintain the non-overlapping
criterion. If this gap is smaller than δ parameter, the spot is discarded, and the pro-
cedure is repeated until reaching the desired density of contact spots. The density of
these spots is defined by d = Ac/A◦, where Ac is the total area of contact spots and A◦
represents the area of the nominal contact radius.

Three distinct types of contact clusters are definedA1,A2 andA3, presented in Fig. 4.1.
They correspond to the following ratios of cluster radius to the most probable spot radius:
R◦/r◦ = 5, R◦/r◦ = 10 and R◦/r◦ = 20, respectively. It implies that for the same density,
the number of spots forA3-type cluster will be higher than forA2 cluster and so on. All
the construction parameters are summarized in Table. 4.1.

Cluster R◦/r◦ Spot characteristics Flower parameters
name rmin/r◦ σ/r◦ δ/r◦ n f

max η f ρ f

A1 5 0.25 0.25 0.5 0.04 40 6
A2 10 0.5 0.5 0.5 0.04 40 6
A3 20 0.5 0.5 0.5 0.04 40 6

Table 4.1: Parameters of the geometrical construction of multi-spot areas.

A1, R◦/r◦ = 5

d = 31.71%

A2, R◦/r◦ = 10

d = 23.68%

A3, R◦/r◦ = 20

d = 8.38%

Figure 4.1: Random clusters of contact spots used for multi-spot simulations with r◦ = 1:
A1, A2, A3
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4.2.2 Greenwood’s Model

In its original presentation, the Greenwood model deals with constriction resistance
of circular contact spots. These contact spots are assumed punctual and are gathered
together within a cluster. It assumes a constant potential across all contact points, set
uniformly at U0. The problem takes on the problem of conduction between half-spaces,
as we studied before. The flux at each spot is denoted by ji for the i-th contact spot. The
definition of the potential at l-th spot leads to the definition of the following equation

U0 = jlrl,l +
∑
i,l

jiri,l, (4.1)

where ri,l represents the resistance between the i-th and l-th spots, rl,l is inherently the self-
resistance term, i.e. the constriction resistance produced by an isolated contact spot l. This
self resistance is equal to 1/4Kal for a circular spot of radius al, with K being the conduc-
tivity of the half-space. The resistance term ri,l, with i , l decays inversely proportionally
to the distance di,l between the centers of the spots, in summary we get

ri,l =


1

4Kal
, if i = l,

1
2πKdi,l

, if i , l
(4.2)

Equation (4.1) can be turned into a linear system of equations[
R
]
{ j} = {Φ0} (4.3)

with the matrix resistance, denoted
[
R
]

and { j} being the vector of flux transmitted at
the contact spots. The Greenwood resistance formula yields an approximation for the
constriction resistance of the whole contact area Rtot as:

Rtot =
{c}T[R]{c}
||c||2F

, (4.4)

where the vector {c} = 4K{a1, a2, . . . , aN}
T is the inverse of the diagonal of the matrix [R].

Equivalently, the Greenwood’s constriction resistance could be expressed as a double
summation:

Rtot =

 n∑
i, j

aia jri, j


/  n∑

i

ai
2

 (4.5)

In addition, Greenwood proposed a further simplification assuming all contact spots are
equal to a mean radius, ā. The total flux Q, relates to the potential Φ0 by the constriction
resistance Rtot = Φ0/Q. Note that the matrix [R] is diagonal dominant if one assumes that
∀i, j, i , j, ai ≪ di, j. The definition in Greenwood’s formula for the self-resistance allows
to use any shape of spot as was remarked in [Boyer, 2001b], where the author considered
contact spot shaped like square or triangle. This adapted Greenwood’s resistance will
mix cross resistance terms ri,l and the self-resistance which could be obtained through
our phenomenological models based on BEM results (see previous Chapter, Eq. 3.10 and
Table 3.1). Hence, the self-resistance ri,i will be defined by the spot’s mean radius r◦,i and
its normalized number of petals n′i = n f

i ξi with ξ = li/a◦,i and li is the half-length of petals
of the i-th spot:

ri,i =
U0

Q f (r◦,i,n′i )
. (4.6)



162 Multi-Spot Conductivity and the Effect of Oxides

In other words, for every spot instead of assuming ri,i = 1/(4Kai) we will use the resistance

ri,i =
U0

Q◦i

1 + p1ξi

1 −
1

p2n f
i ξi + 1



, Q◦i = 4KU0ai,

where p1, p2 are the model parameters analogous to a, b in Eq. 3.10. Simplifying this
expression we get the inverse self-resistance as

1
ri,i
= 4Kaiγi, γi = 1 + p1ξi

1 −
1

p2n f
i ξi + 1

 ≥ 1,

where γi is the shape corrective factor depending on ξi and n f
i . This enhanced model

could be simply seen as Greenwood model for bigger spots. Then the vector {c} takes the
form:

{c} = 4K{a1γ1, a2γ2, . . . , anγn}
T

and the total resistance can be computed from Eq. (4.7) as:

Rtot =
1

4K
∑n

i (γiai)2

 n∑
i

γiai +
2
π

n∑
i, j,i, j

γiaiγ ja j

di, j

 , (4.7)

where the first term is simply the sum of self-resistances and the second one takes into
account the resistance due to mutual arrangement of contact-spots. It is quite clear from
this equation that since γi ≥ 1 and di, j > ⟨ai⟩, the resulting resistance which takes into
account flower-shaped clusters will be smaller than the one found for circular spots of
the same average radius ⟨ai⟩. This model can be seen as an extended Greenwood model
for constriction resistance.

Testing the extended Greenwood model

In this short section we perform a series of simple tests to demonstrate how the total
contact resistance is affected by the shape factor γi aiming to model more realistic contact
clusters. We consider two models: the first one assumes that the shape factor is the same
for all contact spots γi = γ ≥ 1, which we refer to as constant shape factor. The second
model adjusts the size of cluster accordingly to its size γi = 1 + γ′ai ≥ 1, this model is
referred as proportional shape factor. We generate a sample distribution of contact spots
with parameters listed in Table 4.2 (see Fig. 4.2) and compute the reference resistance
Rtot according to Eq. 4.7. Further, all contact spots are expanded according to a constant
or proportional shape factor and the resistance is recomputed providing us with a ratio
R(γ)/Rtot which is shown in Fig. 4.3. This primitive simulation is repeated for different
contact densities d = {0.025, 0.05, 0.1}. The results demonstrate a stronger resistance decay
for proportionally adjusted shape factor (see Fig. 4.3(b)) for which bigger contact spots,
which ensure the higher flux, become proportionally bigger. These results are quite
straightforward and we can go for our slightly more advanced model which takes true
change in shape factor and the resulting conductivity.

4.2.3 Comparison with BEM and conclusion

Here we compare Greenwood’s resistance for different configurations of different den-
sity (like those shown in Fig. 4.1) with accurate simulations carried out by our BEM
implementation. An example of BEM results in normal flux is presented in Fig. 4.4 for
configuration A1. In contrast to the study of individual flower-shaped spots, the nor-
mal flux does not follow the symmetry of the geometry. With naked eye we see higher
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Table 4.2: Simulation Parameters

Parameter Notation Value
Average Radius ⟨a⟩ 1 (l.u.)
Minimum Radius amin 0.1⟨a⟩
Standard Deviation σ/⟨a⟩ 0.3
Minimum Distance between circles δ 3σ
Cluster Radius R◦/⟨a⟩ 50
Spot Densities d {0.025, 0.05, 0.1}
Uniform shape factor – γi = γ ∈ [1, 1.2]
Proportional shape factor – γi = 1 + γ′ai, γ′ ∈ [0, 0.2]

Constant shape factor γi = γ

(a) (b) (c)

Proportional shape factor γi = 1 + γ′ai

(d) (e) (f)

Figure 4.2: A sample configuration of circular spots with a density d = {0.025, 0.05, 0.1}
for (a,b,c) with a constant shape factor γ1.2 and (d,e,f) with a proportional shape factor
γ′ = 0.2. Grey circles on the foreground represent the original distribution of spots and
background red circles represent the expanded ones for γ = 1.2 or γ′ = 0.2.

values of the flux near the outer border of the cluster but lowered with the vicinity of
the interacting spots. Note that BEM simulation results do not make an assumption of
point-like spots and properly compute all interaction terms contrary to the Greenwood
model. Nevertheless, the comparison between these two models presented in Fig. 4.5 for
different contact densities reveals that the extended Greenwood model is very accurate
and the finite-size interaction captured by the BEM is negligible for the total contact re-
sistance. The relative error between two models is presented in Fig. 4.6. In this study
we demonstrate that the error is correlated with the number of contact spots, rather than
with the density of contact. The Greenwood resistance appears to be very accurate in
estimation of the constriction resistance for a cluster of localized contact spots.

It is important to remark that such a Matérn hard-core point process does not re-
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Figure 4.3: Resistance ratio between the original spots and modified with (a) a constant
shape factor or (b) proportional shape factor.

sult in a physics-motivated distribution of contact spots, which should not be evenly
distributed within a circular region. A much more accurate vision was constructed
in [Greenwood and Tripp, 1967] or more recent works [Pastewka and Robbins, 2016,
Yastrebov, 2019] accounting for elastic interactions. In contact of rough spheres, which
represent a rather general case for solids with revolution symmetry, at small loads, the
Hertzian theory does not provide an accurate assessment of contact area distribution,
i.e. the classical top-down multi-scale approach does not work [Greenwood et al., 1984].
So, following Greenwood-Tripp model [Greenwood and Tripp, 1967], one could measure
the probability of having asperity within every location of the Hertzian area and out-
side which would allow to smartly distribute contact spots according to this probability.
This work, however, is left for the future. In Section 4.4 we will adopt a more direct and
free of assumption approach enabling us to obtain realistic contact clusters for a localized
contact case.

4.3 FFT-BEM for conductivity problem

The previous section has allowed to delve into the problem of conduction of a simplified
multi-spot model of contact interfaces. However, such models, even if equipped with
long range elastic interactions and physics-based spot distributions, cannot properly take
into account the coalescence of spots (even though such attempts were already under-
taken in the first approximation [Afferrante et al., 2012]). This section aims to present
a methodology tailored for studying conductivity of more realistic contact clusters ob-
tained by accurate contact simulations. This study encompass both non-oxidized (clean)
and oxidized surfaces.

The computations are carried out using an FFT-BEM1 (external open-source) and fast-
BEM (in-house) methods. First, both methods are compared on a benchmark problem
of a circular contact spot conductivity. Due to the similarity between elastic contact and
conductivity problem [Barber, 2003] there are two ways how the FFT-BEM (optimized for
contact problems) could be used to solve the conductivity problem. The first option is to
solve the contact problem for flat punch, then the resulting pressure would be analogous
to heat flux. Another approach is to use a parabolic indenter and evaluate the contact
stiffness when the contact extend reaches the needed value.

In a subsequent part, we will focus on the problem of conduction with oxidized
conductive interface, for which we will use a simple geometric strategy to mimic localized

1We use a high-performance library for periodic and non-periodic rough surface contact called
Tamaas [Frérot et al., 2019].
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Figure 4.4: Results forA1 illustrating the normal flux computed by BEM.
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Figure 4.5: Comparison of the total flux computed by BEM and by extended Greenwood
model for various multi-spot area.
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Figure 4.6: Relative error between the BEM results and Greenwood model for various
multi-spot densities.

oxide films. In presence of such films, the conductive area is reduced in comparison to
the initial contact area and the simple contact stiffness cannot capture this change thus
appealing for a detailed study of the conductivity at the interface. The objective of this
study is to develop a methodology and carry out numerous simulations to obtain some
insights into the influence of the oxidation on the conductivity of rough contact.

4.3.1 Circular contact spot

This section aims to introduce the FFT-BEM for the conduction problem on a half-space.
As precision is crucial, we will reuse the circular contact spot problem as a benchmark for
FFT-BEM. Similarly to the classical BEM, the FFT-BEM is based on an integral equation,
but uses a Fourier transform, and subsequently benefits from the use of convolution
products. However, this relies on a regular mesh or a grid. Originally, FFT-BEM methods
were designed for periodic problems, owing to the application of Fourier transform.
But in Tamaas [Frérot et al., 2019] library, which is used throughout out study, a non-
periodic option is available, i.e. the Green kernel for half-space without periodicity
constraints can be used. This implementation uses the same method as those detailed
in [Liu et al., 2000, Monti et al., 2021] and relies on an expanded pressure representation
in Fourier space, which is subsequently truncated to yield a non-periodic displacement
field.

FFT-BEM and a flat punch

Flat punch indenting an elastic half-space is equivalent to an uniform potential set on the
same area of contact. The framework for the geometrical setup is illustrated in Fig. 4.7
following the grid discretization. The contacting cells are defined by the set Aflat, as
presented in the color frame below.
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Method: Set of contact cells for a circular spot

The pixels are indexed by i and j, denoted by ci, j. The coordinates of its centroid point,
denoted by coordinates {xi, y j} for the cell ci, j are both situated within the interval
[−L/2,L/2]. The set of contacting cellsAflat is defined by a set of cells ci, j such that

Aflat =
{
ci, j

∣∣∣ x2
i + y2

j ≤ R2
◦

}
With R◦ the radius of the circular contact spot.

All the height of pixel in Aflat is assigned the same value, greater than the height
of non-contacting cells. Practically, the height of cells in Aflat is set to 1, while the
non-conductive cells are assigned a value of −1. Within the FFT-BEM framework, as
utilized in Tamaas, the contact problem can be driven in terms of mean pressure, pm.
The convergence loop stops when the mean pressure is reached and contact constraints
are respected. For pm > 0, this ensures the contact on Aflat. The numerical procedure is
illustrated in Fig. 4.10(a).

Figure 4.7: Problem geometry for a circular flat indenter in contact with an elastic half-
space.

Contact pressure and displacement fields obtained by FFT-BEM are displayed in
Figs. 4.8 and 4.9, respectively. The displacement field uz is normalized by the penetration
parameter ω, which is the displacement measured at the flat punch. Note that it is
uniformly consistent for every ”pixel” under the flat punch. Different grid sizes, N, were
used, as the accuracy of course depends on the size of pixel, δx = L/N. In contrast to
classical BEM, the FFT grid definition does not allow special refinement at the indenter’s
edge and requires to solve the problem on a square domain. Therefore, the problem
size accounts for N2 pixels. Integrating contact pressure and converting elastic effective
modulus constant in conductivity would provide us with the total flux.

Incremental stiffness of a parabolic indenter

The constriction resistance might be deduced from the equivalence with the contact
stiffness [Barber, 2003] for a parabolic indenter. However, this requires to compute the
derivative of the applied load in regard of the increment of penetration δω. Two com-
putations are therefore needed as schematized in Fig. 4.10(b). An equivalent Hertzian
contact problem might be considered to evaluate the circular contact spot conduction.

For the sake of precision, the largest circular contact spot should be considered, with
radii R = L/2 − δ and R = L/2 at two subsequent load increments, where δ/L ≪ 1. The
two computations should result in a negligible difference in the contact area: therefore we
assumed δ = δx/8 or δ/L = 1/(8N). This permits the final calculation of the constriction
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Figure 4.8: Maps of contact pressure computed with FFT-BEM for a circular flat punch
with radius of R◦/L = 1/2 in contact with a grid of various size N = {32, 128, 512}
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Figure 4.9: Maps of normal displacement computed with FFT-BEM, for circular flat
punch with radius of R◦/L = 1/2 in contact with a grid of various size N = {32, 128, 512}

resistance with the normal stiffness expressed by the finite difference, as:

R =
E∗

2KA

(
dp
dω

)−1

≈
E∗

2KA

(
δp
δω

)−1

,

where A = πa2 is the contact area.

4.3.2 Comparison with BEM

For FFT-BEM we used grid with NFFT = 322, 642, 1282, 2562, 5122 DOFs. The fast-BEM
version uses triangular mesh element and constant interpolation, the ACA and SVD is
performed with precision ϵ = 1.10−6. The circular contact spot is defined by 4 different
meshes with NBEM = 1192, 4428, 7804, 16746 DOFs (see Fig. 4.11). Despite the lack of
alignment of the FFT grid with the geometry, the FFT-BEM demonstrates a very good
precision. The relative error between the analytical solution and the three methods is
presented in Fig. 4.12: fast-BEM, flat punch FFT and incremental stiffness FFT. The fast-
BEM thanks to its flexibility in mesh arrangement expectedly shows a better accuracy
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FFT-BEM, Flat punch (a)

Input, Flat punchAflat

Contact problem

Displacement results, ω

N, E∗, pm

FFT-BEM, Stiffness (b)

Input, height profile

Contact problem 1

Contact problem 2

Displacement results, ω1, ω1 + δω

N, E∗, pm,1

pm,1 + δp

A1,A2

Figure 4.10: Diagram illustrating the numerical procedure for the computation of con-
ductivity with Flat-punch (a), with the Stiffness equivalence (b)

than the FFT-BEM and the average convergence slope looks better for the fast-BEM but
this aspect is possibly due to non-homogeneous mesh refinement. Note also that we did
not use Richardson extrapolation here to achieve more accuracy. Nevertheless, the FFT
demonstrates a very good accuracy especially when used with the incremental stiffness
approach. We have to remark that such an approach requires two subsequent nonlinear
computations, whereas only one computation is required for the flat punch approach
which is at the same time is a much simpler linear problem.

(a) (b)

0 2 4 6 8 10
jn

Figure 4.11: (a) The boundary element mesh example containing Ne = 7804 elements
used for comparison with the FFT-BEM and (b) the resulting flux.

4.3.3 Flower-shaped contact spots

The FFT-BEM could be also probed on more complex geometries, like the flower-shaped
contact spot. The approach with the incremental stiffness computation would be too
tedious to implement, but the flat-punch approach with the flower-shaped contour is still
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Figure 4.12: Error in flux for a circular contact spot for different sizes of the problem for
fast-BEM and FFT-BEM.

feasible. To increase the precision, the smallest possible extension of the grid is used so
that r◦ + r1 = L/2. An example of pressure field is presented in Fig. 4.13, for a flower with
100 petals, and a height petal ratio of r1/r◦ = 0.1, using a grid of ( 256 × 256 ) pixels. The
results shown Fig. 4.13 also illustrate the difficulty for a grid, to follow a complex contour
shape.

A consistent study of the flower-shaped results are displayed Fig. 4.14 using different
grid size, and different flower geometry. The total flux transmitted is normalized as in the
previous chapter. The flux values obtained with FFT-BEM align well with those computed
by BEM but slightly underestimate it. A convergence tendency is however quite clear:
with the increasing grid size, FFT-BEM results converge towards Richardson extrapolation
of BEM results, which could be seen as the reference value. The consistency of the results
is checked with the least-square fitting with coefficients summarized in Table 4.3. The
coefficients a and b determined for FFT-BEM results and related to the phenomenological
model Eq.(3.10), tend to our reference values when N increases. In conclusion, the FFT-
BEM method presents a good alternative to solve both contact problem and conductivity
problem.

Method & LMS fitted coefficients Pearson

discretization a b ab correlation r2

FF
T

256 × 256 0.863 0.348 0.300 0.9985

512 × 512 0.898 0.334 0.300 0.9995

1024 × 1025 0.916 0.328 0.300 0.9997

BEM-Richardson 0.923 0.326 0.301 0.9997

Table 4.3: Least squares fit for coefficients of Eq. (3.10) for flower-shaped spot obtained
using FFT-BEM and Richardson extrapolation of BEM results.
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Figure 4.13: Illustration of the FFT-BEM contact pressure (or normal flux) for a flower-
shaped punch with a grid of 256 × 256 pixels: r1/r◦ = 0.1, (r1 + r◦)/L = 1/2, and n = 100
petals.

4.4 Elastic contact of rough oxidized spheres

4.4.1 Real contact area

This section explores the influence of oxidation, which results in an additional constriction
resistance. Oxidation often occurs due to exposure to oxidizing agents, commonly found
in the surrounding air, like dioxygene. Such a phenomenon leads to the creation of non-
conductive or weakly conductive films on the contact. As oxidation expands, the real
conductive area decreases compared to a clean non-oxidized conductive area. Therefore,
the established equivalence between contact stiffness and constriction resistance is no
longer valid anymore and one needs to delve into the join contact/oxide morphology in
the contact interface. The analysis starts with the conduction problem for an oxide-free
rough surface in contact simulated in FFT-BEM adapted for this purpose. Assuming weak
unilateral contact between contact and conduction problems, the latter is solved either
with FFT-BEM or with our fast-BEM permitting mesh refinement near the borders of
contacting clusters. Our contribution focuses on constructing oxide model and studying
its role. To pass from the contact area defined on a regular grid in FFT-BEM, we constructed
an algorithm transforming a stair-like FFT boundary into a smooth spline, which is further
used to solve the problem using fast-BEM.

Rough surface generation

The computation of the real contact area, start with the generation of rough surfaces. To
generate those, we opt for a self-affine description of roughness, which employs a white
noise filtering in Fourier space [Hu and Tonder, 1992] and implemented in Tamaas. Four
parameters are required, similar to those already employed in the generation of self-affine
contact spots and summarized by the set I

• I = {σ, kl, ks,H},
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Figure 4.14: Evolution of the normalized flux for the flower-shaped contact with the
normalized number of petals. The FFT-BEM results were obtained on 3 grid sizes N =
{256, 512, 1024}, black circles represent extrapolated fast-BEM results. Dashed lines of
the associated color represent the least-square fit of the phenomenological model, see
Table 4.3.

where σ represents the standard deviation of the roughness height, kl and ks are the low
and high cut-off wavenumbers, respectively, and H denotes the Hurst exponent, which
governs the decay of the spectrum of the roughness. The use of the Fourier transform
leads to the definition of the PSD function, Φ, which follows a power law decay with

respect to the wavenumber
√

k2
x + k2

y with the exponent −2(H+1). Here, the presence of a
plateau in the PSD is neglected. As in the study of self-affine spots, because of the random
aspect of such surfaces, several experiments must be conducted for each configuration,
seeking for a mean behavior. The rough surface definition via the Fourier-transform
appears very convenient for FFT relying on the same grid. To localize the contact cluster
to a central region of the surface, we superpose the rough surface onto a parabolic one.
The height profile definition follows the method detailed in the box below.

Method: Parabolic rough surface

The contacting rough surface is defined as a scalar function z of the planar coordinates
{x, y}. This contacting surface represents a superposition of a self-affine surface zs and
a parabolic body-shape zp as defined below:

zs(x, y) = Z(σ, kl, ks,H), (4.8a)

zp(x, y) = −
1

2R

(
x2 + y2

)
, (4.8b)

z(x, y) = zs + zp, (4.8c)
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where R is the curvature of the parabolic surface across both the x-axis and y-axis.
The parabolic surface is a close approximation for a spherical one if the curvature R is
considerably larger than the average contact radius a; in practice we set R = 10L and
a≪ L.

An illustration of the three stages of the algorithm is presented in Fig. 4.15, utilizing
exaggerated parameters σ/L = 0.1, kl = 8, ks = 16, and H = 0.5, across a grid of size
N = 512. The standard deviation is set to 0.1 to keep the height of the rough surface below
the height of the parabolic profile.

Figure 4.15: Rough surface with nominal parabolic surface using kl = 8, ks = 32, H = 0.5
and the parabolic radius R = 2

Contact and conductivity results

The contact problem is first solved, followed by the problem of conduction imposing flat
punch indenter over the area of conduction. An example of the results of conduction is
displayed in Fig 4.16, with the set of parameters: kl = 8, ks = 16, and H = 0.5, as those
employed for the rough surface generation in Fig. 4.15. The mean pressure is determined
for a prescribed contact radius as for a smooth parabolic surface aHertz, but must be defined
over the grid of geometric dimension (L×L). The radius derives from the load in Hertzian
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problem. Thus the mean pressure is define by the following expression,

pm =
4E∗

3RL2 a3
Hertz , (4.9)

where E∗ represents the effective elastic modulus.

aHertz
αHolm

0 1 2 3 4

jn/j◦

Figure 4.16: Result map for the normal flux through the contact area induced by the
pressure equivalent to aHertz/L = 0.25.

The contact area consists of nominally circular contact area crossed by furrows and
stripes. At the beginning, for a low contact regime, the contact spots are distinctly
separate, for increasing load they expand and coalesce. The contact area seems to be well
localized within a circular cluster. This cluster size could be defined in term of the Holm’s
radius, denoted by αHolm, as represented in Fig. 4.16. This radius based on the interaction
term in Greenwood model Eq.(4.7), can be reformulated for the discretized problem in
which every contacting pixel could be seen as individual contact spot as defined in the
box below.

Definition: Holm’s radius: discrete and continuous definitions.

For a conductive map C composed of pixels {i, j} ∈ C, the Holm’s conductive radius
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can be defined from interactive term in Eq. (4.7) where spot radii are all set to be equal:

Ri =
1

4Kα Holm
=

1
2πKNc

n∑
i, j,i, j

∑
{i, j}∈C, i, j

1
∥xi − x j∥

where Nc is the number of ”pixels” in the set C and xi is the centroid coordinates of
the i-th pixel. From this expression we readily get the Holm’s radius,

α Holm =
πNc

2

 ∑
{i, j}∈C, i, j

1
∥xi − x j∥


−1

(4.10)

Note that this radius is defined using the whole span of pixel, some are touching
themselves, in contrast to the original definition considering separated contact spots.
Equivalently, the Holm’s radius can be interpreted as an average distance of inter-
action, reformulated by the Green function and the Riemann integral. Indeed, the
expression on the right-hand side in Eq. (4.10) could be derived from a continuous
framework, where the double summation is replaced by integrals

1
2α Holm

≈
2

Ac

〈∫
Ac

G(x, y)dSy

〉
∀x∈Ac

,

where Ac is the contact area and the average ⟨•⟩ is taken for all points x ∈ Ac.

Visually the Holm’s radius appears to be consistent with the cluster size, the contact
area widely spread beyond the radius of aHertz, due to the roughness.The result, in general,
demonstrate a particular sensitivity to the low wavenumber parameter kl. Other examples
are depicted in Fig. 4.17 and 4.18, for different roughness parameters and for different
mean pressure applied, using aHertz/L = 0.1 and aHertz/L = 0.35, respectively. The contact
size area better aligns with the Hertzian contact spot, as aHertz, kl increase, in agreement
with [Greenwood and Tripp, 1967]. To limit the size of contact area, and ensure that it
does not spread beyond the grid limit, the low cut off parameter is set higher than 8.
Some test have demonstrated, it is hard to set a contact area with aHertz/L < 0.05, as for a
grid using N = 512 piwel on its length, the contact area set is equivalent to the pixel size.

αHolm

kl = 8, H = 0.50 kl = 16, H = 0.50 kl = 32, H = 0.50

Figure 4.17: Real contact area for contact with a rough sphere for with Hurst parameter
H = 0.5, with different low cutoff wavenumber kl = {8, 16, 32} and with a prescribed
Hertzian radius of a/L = 0.1.

The real contact area grows as the mean pressure increases. Consequently, individual
contact spots expand and coalesce resulting in a more ”monolithic” unified contact area.
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αHolm

kl = 8, H = 0.50 kl = 16, H = 0.50 kl = 32, H = 0.50

Figure 4.18: Real contact area for contact with a rough sphere for with Hurst parameter
H = 0.5, with different low cutoff wavenumber kl = {8, 16, 32} and with a prescribed
Hertzian radius of a/L = 0.35.

The coalescence of the contact spots is prompted by an increase of kl. This phenomenon
is consistent with the multi-asperity based model [Bush et al., 1975], which leads to the
relation A ∼ F/

√
m2. The contact area A decreases with an increasing m2 value when kl is

raised, maintaining a steady load F.

4.4.2 Conductivity of a clean rough contact

For the resolution of the conductivity problem, we consider the real contact area obtained
by the FFT-BEM simulations as the conductive contact area, disregarding any oxidation
factors at this stage. To solve the conductivity problem, the contact area could be trans-
formed in a flat punch of the same contour, so solving the indentation problem by analogy
results in the flux within the contact area. Of course, for oxide-free surface, an incremen-
tal stiffness could be also used to evaluate the conductivity. However, since the aim of
this study is mainly to investigate the effect of oxide, so throughout the study we use
the flat punch analogy. The low cut-off wavenumber kl varies in the span {8, 16, 32}, the
Hurst parameter H in {0.25, 0.5, 0.75} while the magnification is set equal to ζ = ks/kl = 2.
10 simulations are conducted for every set of parameters, referred by a seed index. The
mean imposed pressure is driven by the contact radius aHertz/L ranging from 0.05 to 0.35
by increments of 0.05, all these parameters are summarized in the box below. This set-up
leads the determination of the average behavior, surrounded by a confidence interval.
The width of the interval is given by Bienaymé-Tchebychev formula, similar to analysis of
self-affine contact spots. In Fig. 4.19 we show the evolution of the flux for the normalized
force F′ = F/(AE∗). It is interesting to note that the normalized flux seems to be propor-
tional to this normalized force. However, the variation related to the wavenumber kl is
not monolithic.

Method: Set of parameters

• Cutoffwavenumber (3 values): kl = {8, 16, 32}, ks = 2kl.

• Hurst paramaters (3 values): H = {0.25, 0.5, 0.75}.

• Contact load (7 values): aHertz = [0.05 : 0.35] with step of 0.05.

• Seed index (10 values): [1 : 10].

Cumulatively, this leads to a total of 630 simulations.
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Figure 4.19: Evolution of the total flux with the normalized force for different rough
surfaces. The flux is normalized by 2KU0L, equal to the flux for a circular contact spot
with a radius of L/2

The normalized results of the flux are presented in Fig. 4.20 for the different rough-
ness configurations. This flux is normalized by QHolm, which stands for the total flux
transmitted by a circular contact spot with a radius of aHolm,

QHolm = 4KU0αHolm

As seen, the total flux through the contact area is lower than the reference flux through
a circular spot with Holm’s radius QHolm. The ratio between these two fluxes remains
relatively stable, which is due to a rather compact geometry of the contact area cluster.
The most significant differentiation in these results can be attributed to the parameter
kl controlling representativity of the roughness. Moreover, as kl increases, it entails a
subsequent increase in compactness in the contact area. At the same time the Hurst
parameter H seems to have a weaker influence as could be anticipated from the study of
self-affine spots.

The discrepancy between the computed flux and Holm’s flux QHolm inherits from
the non-connectedness of the contact area within the radius of αHolm which could be
eventually amplified by numerical errors, whose analysis we skip in this section. The
comparison between associated contact areas (true one and Holm’s radius defined ones)
is presented in Fig. 4.21 for increasing contact area. At light contact regime stage, the real
contact area would appear less compact, manifesting larger non-conductive space within
a radius of αHolm, as illustrated in Fig. 4.16. Interestingly, the ratio tends to a certain
limit which depends solely on the parameter kl indicating that it is probably affected by a
numerical error as in [Yastrebov et al., 2015b, Yastrebov et al., 2017b]. The limit for kl = 32
appears to be upper one, exhibiting contact spot even well beyond the Holm’s cluster
radius. The compactness of the real conductive area increases, as the mean pressure rises,
akin to the representation in Fig. 4.18. The contact area expands as the load increases,
overtaking the area defined by the Holm’s radius.

Oxide film model

To handle the problem for oxidized contact, we need to construct a model for
surface oxides. Such films, present in contact, increase the resistance which
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Figure 4.20: Normalized flux change with the (conductive) contact area in absence of
oxide for different roughness parameters kl = {8, 16, 32}, H = {0.25, 0.5, 0.75}: mean value
Q/QHolm and the confidence interval are reported.

can no longer be predicted by the Holm’s radius or more advanced mod-
els [Yastrebov et al., 2015c]. The problem of oxide growth has been extensively stud-
ied [Lawless, 1974, Thomas and Probert, 1970, Jeurgens et al., 2002] showing the com-
plexity of oxidation which depends on many different factor, but could be formu-
lated in term of an activation energy. One of the crucial parameters is the tempera-
ture playing a role of a source of energy. On another hand, the energy of activation
can be lowered by the increase of the pressure of oxidant component. The oxidation
starts on the metal surface, and continues with the growth of the oxide layers over
the surface, and inward the bulk. The very stage of oxidation at low temperatures
cannot be explained by temperature activated diffusion, so a different model was de-
veloped by Cabrera-Mott model [Cabrera and Mott, 1949]. Since the initial oxide films
are very thin the curvature of the surface does not play a big role, however, at the
nano-scale there is a correlation between the oxidation kinetics and the curvature, see
e.g. [Ermoline and Dreizin, 2011]. The morphology of oxide films depends also on the
material. For copper, oxidation first occurs in formation of island of oxide as was reported
in [Yang et al., 1998, Lampimäki et al., 2007]. As a result, oxidation follows the crystal ori-
entation of the grain underneath, yielding the formation of rather polygonal shape for
oxide film islands.

Even though some models have proven their capabilities to simulate the oxida-
tion [Huin et al., 2005, Pillai et al., 2021], we opt here for a simple geometrical model.
The oxide film morphology is constructed as cut through a random self-affine field. A set
of parameters IO used for this construction includes a similar (but uncorrelated) set as
for the roughness construction but with an additional parameter indicating oxide surface
fraction ϕo = Ao/A0:

• Io =
{
σo, ko

l , k
o
s ,Ho, ϕo

}
,

where σo is the standard deviation of the random distribution, ko
l , ko

s are the lower and
upper cut-off wavenumbers, respectively, and Ho represents the Hurst parameter. These
parameters lead the definition of first rough surface zo, which employs a self-affine gener-
ation model like for zs in Eq.(4.8a). Then, the oxide patches are delineated, to correspond
with a ratio of oxidation, set to Ao. The oxide region encloses a span of pixel, O, as
presented in the yellow frame below,
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Figure 4.21: The ratio between the Holm’s area to the true contact area for increasing
normalized load and different roughness parameters. The mean value and confidence
interval are reported.

Method: construction of oxide clusters

A spatial random field Ω(x, y) is generated for the set of parameters {σo, ko
l , k

o
s ,Ho
}.

Now, to model the oxide film, we will consider zones {x, y} ∈ O where Ω(x, y) ≥ l.
Assuming that the surface fraction of the oxide is provided by the last parameter
ϕo = O/A0, one needs to find the corresponding l:

Find l such that for O =
{
{i, j}

∣∣∣ Ω(xi, x j) ≥ l
}
, O/A0 = ϕ

o

This is a nonlinear problem and can be found, for example, by a bisection method or
Newton method with a model Gaussian distribution. Nevertheless, a residual error
may still persist due to the pixel-based discretization of the grid. Various tests have
indicated a maximum error of around 0.5% in terms of the surface fraction of the oxide.

Examples of oxide films are depicted in Fig. 4.22 and 4.23, representing oxide fractions
of ϕo

≈ 20% and ϕo
≈ 40%, respectively. In Fig. 4.22, the random field parameters are

ko
l = 8, and ko

s = 128 with different Hurst parameters {0.4, 0.6, 0.8} presented from left to
right. This approach yields relatively dense and sparsely distributed oxide spots, which
are clearly distinct from each other. The individual size of these oxide spots decreases
as the Hurst parameter increases or for the low cut-off wavenumber increase ko

l (not
presented in these maps). In Fig.4.23, the average size of oxide patches increases, but they
remain well separated. In all our generations the higher cut-off wavenumber is always
set as ko

s = 32ko
l .

Conductive area

To take into account the effect of the oxide film, we simple assume that areas covered
by oxide become insulating. Since the film thickness is very small, we assume that
homogeneous elastic model is still valid for the entire half-space. The conductive area,
denoted by A′, is a superposition of the conductive area (area without oxide films) and
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(a) (b) (c)

Figure 4.22: Generated oxide films with surface fraction ϕo = 20% using the following
wavenumber parameters: ko

l = 8, ko
s = 128 on the grid (512 × 512) pixels presented for

different Hurst exponents (a) H = 0.4, (b) H = 0.6 and (c) H = 0.8.

the contact area:
A
′ = O ∩A.

Some examples of such a superposition are presented in Figs. 4.24 and Fig. 4.25 for the
rough surface defined by the lower cut-off wavenumber kl = {8, 32}, respectively. In
these figures, three different lower cut-off parameters for the oxide layer are employed,
illustrating the difference induced by this latter parameter. However, all oxide layers use
the same Hurst parameter of Ho = 0.4. These figures emphasize the role of ko

l /kl ratio,
controlling to some extent the size of oxide spots to contact spots. When ko

l /kl ≈ 1, the
size of the oxide defect appears to be similar to the size of the contact spot for an interval
of oxide area fractions ϕo. In the limit ko

l /kl ≫ 1, such as ko
l = 32, kl = 8, the oxide defect

is much smaller than average size of contact spots. Whereas in the limit ko
l /kl ≪ 1, for

example, for ko
l = 8, kl = 32, it entails the opposite size effet: oxide spots are much bigger

than contact spots. Nevertheless, the Holm radius remains a good measurement of the
conductive zone, even for a particular example of kl = 32 and ko

l = 8.

4.4.3 Oxidation analysis and results

This study of conduction was carried out by FFT-BEM using flat-punch geometry with
the contour defined by the conductive areaA′. The oxide layers and the contact area are
both defined on the same grid, which results in a straightforward definition of conductive
area. An example of the normal flux is displayed in Fig. 4.26 using surface roughness
parameters as for Fig. 4.16 but this time with the superposition with the conductive area
defined by oxide films, whose surface fraction reaches ϕo = 40%.

Adding the oxidation strongly increases the parametric space: first by 4 parameters for
the random field and also by the oxide surface fraction ϕo. This investigation is confined
to the variation of ko

l andϕo only since they are the most influential parameters. The Hurst
parameter for the oxide random field is set to Ho = 0.4, and the high cutoffwavenumber is
defined to be ko

s = 2ko
l . Three distinct values for the low cutoffwavenumber, ko

l = {8, 16, 32}
will be explored in combination with three different oxidation rates ϕo = {20%, 30%, 40%}.
The parametric space for rough surfaces is reduced as well: the Hurst exponent is set to
H = 0.5, and the lower cut-off wavenumber is set to kl = {8, 16, 32}. Due to the stochastic
nature of the surface of conduction, multiple simulations are needed: 10 experiments are
conducted for every combination of parameters, see a summary in the box below.
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(a) (b) (c)

Figure 4.23: Generated oxide films with surface fraction ϕo = 20% using the following
wavenumber parameters: ko

l = 8, ko
s = 128 on the grid (512 × 512) pixels presented for

different Hurst exponents (a) H = 0.4, (b) H = 0.6 and (c) H = 0.8

αHolm

kol = 8 kol = 16 kol = 32

Figure 4.24: Maps of real conductive area, defined by intersection the real contact area
using parameter of kl = 8, H = 0.5, ks = 16 for a Hertzian radius parameter aHertz/L = 0.35,
intersected by the oxide layers defined by different FFT parameter kl of {8, 16, 32}, Hurst
parameter of H = 0.4, and a set oxidation rate of 40%

Method: Set-up parameters for conductivity of oxidized rough contact

Parameters for the generation of the roughness, I:

• Wavenumbers (3 values): kl = {8, 16, 32}, ks = 2kl

• Hurst paramater : H = 0.5,

• Load applied (10 values): aHertz/L = [0.05, 0.35] with step of 0.05.

Parameters for the generation of oxide films Io:

• Wavenumbers (3 values): ko
l = {8, 16, 32}, ko

s = 2ko
l

• Hurst paramater : Ho = 0.4,

• Surface fraction (3 values): ϕo = {0.2, 0.3, 0.4}

Seed index (10 values): [1, 10]
This accounts for a total of 1890 simulations.
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αHolm

kol = 8 kol = 16 kol = 32

Figure 4.25: Maps of real conductive area, defined by intersection the real contact area
using parameter of kl = 32, H = 0.5, ks = 64 for a Hertzian radius parameter aHertz/L = 0.35,
intersected by the oxide layers defined by different FFT parameter kl of {8, 16, 32}, Hurst
parameter of H = 0.4, and a set oxidation rate of 40%

αHolm

0 1 2 3 4

jn/j◦,Holm

Figure 4.26: Map result of the normal flux with a rough surface defined by kl = 8, H = 0.5,
ks = 16 with the contacting pressure aHertz/L = 0.35 interplaying with oxide films built
with ko

l = 32, H = 0.4
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The results of simulations for kl at 8, 16, and 32 are presented separately in
Figs. 4.27,4.28 and 4.29, respectively. Each figure depicts the total flux normalized by
the flux through a non-oxidized surface Q/Qclean for varying oxide patterns defined by ko

l
and ϕo. We can see that the ratio ko

l /kl does indeed has a strong effect on the contact resis-
tance. The confidence intervals or standard deviations of the results appear to be fairly
wide, but they gradually decrease as the area of conduction increases. The dispersion of
results is also reduced with the multiplication of oxide patterns, i.e. with the increase in
ko

l value. In fact, the average size of oxide spots decreases with ko
l , similar to the annular

contact spot problem. The proportion of oxide also reduces the flux compared to the flux
of the non-oxidized surface. However, this loss is not proportional to the oxidation ratio,
and appears to be more limited.

To better this non-linear influence of the ratio of oxidation, the drop in flux Q, com-
pared with Qclean generated by the non-oxidized surface, is indentifed with the law pre-
sented in the color frame below. It appears this drop depends on the contact area A, as
well, decreasing as this latter increases.

Model: Interpolation result of Q/Qclean

The results in flux are identified by the following phenomenological model, encom-
passing the effects of the oxidation ratio ϕo and the growth of the contact area A
:

Q
Qclean

= 1 −
1 − a(ϕo)b

1 + c(A/ϕo)d
(4.11)

With a, b, c, d are four positive parameter

This law can be decomposed in two terms, one influenced by the ratio of oxidation, ϕo,
and a second term which account for the ratio A/ϕo. When the rate of oxidation decreases
to 0, this law tends to 1, i.e. the area of conduction is not perturbated by the oxidation.
The coefficient values are found by least square fit on seperated serie of data related to
the different couples (kl, ko

l ). The results of interapolation are presented in black dots in
Fig. 4.27, 4.28, and 4.29.

4.4.4 Comparison with BEM results

To validate the FFT-BEM simulation results, we reproduce some simulations using our
fast-BEM with and without oxide films. The surface roughness is defined by kl = 32,
ks = 64, and H = 0.5, a light loading is considered aHertz/L = 0.15. These parameters
correspond to the smallest contact areas among the span of parameters considered so
far. These parameters also reduce the variability of the results, as illustrated Fig. 4.29.
All associated contact problems and oxide generation are conducted for a grid sized at
(512 × 512). All parameters are summarized in a box below.

Method: Parameters for BEM simulations

Surface roughness parameters: I = {kl = 32, ks = 64,H = 0.5} and aHertz/L = 0.15
Oxide parameters Io :

• Wavenumbers (3 values): ko
l = {8, 16, 32},

• Hurst paramaters: Ho = 0.4,

• Oxide surface fraction (3 values): ϕo = Ao = {20%, 30%, 40%},

This study is conducted on a single surface roughness and accounts for the total of 18
simulations. Each geometry of oxide layers area is computed for two different element
sizes, h/L = 2/N and h/L = 1/N.
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Figure 4.27: Normalized flux for oxidized surfaces evolving with the conductive contact
area Ac: the rough surface constructed with kl = 8 with different oxide patterns con-
structed using ko

l = {8, 16, 32} and oxide fraction of Ao = ϕo = {20%, 30%, 40%}.

0 2.5 5 7.5 10

Real conductive area, A (%)

0.75

0.80

0.85

0.90

0.95

1.00

F
lu

x
,
Q
/Q

cl
ea
n

kl = 16

8

Filled

Filled

Filled

16

Filled

Filled

Filled

32

Filled

Filled

Filled

kol /A

20%

30%

40%

8 16 32 k
o
lAo

20%
30%
40%

Figure 4.28: Normalized flux for oxidized surfaces evolving with the conductive contact
area Ac: the rough surface constructed with kl = 16 with different oxide patterns con-
structed using ko

l = {8, 16, 32} and oxide fraction of Ao = ϕo = {20%, 30%, 40%}.

From FFT to BEM: from binary matrix to smooth surface

Through this final study, we aim to compare FFT-BEM and BEM results for oxidized con-
ductive area. Employing BEM needs to redefine the boundaries of the conductive surface.
We shift from a pixel-based description to a new paradigm, enabling the establishment of
smoother outlines for related spots. Nevertheless our goal pertains to conservation of the
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Figure 4.29: Normalized flux for oxidized surfaces evolving with the conductive contact
area Ac: the rough surface constructed with kl = 32 with different oxide patterns con-
structed using ko

l = {8, 16, 32} and oxide fraction of Ao = ϕo = {20%, 30%, 40%}.
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Flat punch, contact problem

Displacement results, uz

N, E∗, pm

A

A
′, pm

O

Figure 4.30: Diagram illustrating the numerical procedure for the computation of the
conductivity for oxidized surface based on the flat-punch analogy.

initial pixelated contour as much as possible. For this task, the definition of the smooth
curve takes advantage of Bezier curve.

FFT-BEM results are presented on a regular grid. The contact area is thus could
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FFT-BEM, & BEM conduction

Contact input I Oxide input Io

Contact problem Oxide generation

Mesh definition

BEM, conduction problem

Normal flux result, jn

N, E∗, pm

A

A
′

O

Φo

Figure 4.31: Diagram illustrating the numerical procedure for the calcul of conductivity
based on Flat-punch

be seen as a binary matrix. To construct an adapted mesh for the BEM simulations,
we need to extract non-connected regions and approximate their contours with closed
smooth curves, for example, cubic Bezier splines. To this end, we have developed a
computational approach to identify distinct contact regions and transform their contours
into closed Bezier splines. This method not only facilitates a precise representation of
the interface and the accurate use of the fast-BEM method but also potentially permits
to increase the accuracy of the contact area representation. The contours are extracted
via OpenCV’s contour detection algorithm, and the resulting points are coarsened to
eliminate redundant details. Subsequently, the script meticulously calculates control
points for Bezier splines that closely emulate the contour while ensuring there are no
self-intersections or excessively tight curvatures. It is shared along with our fast-BEM
code as a tool [Beguin and Yastrebov, 2023]. The complete numerical chain is depicted in
Fig. 4.31, where the FFT-BEM conduction resolution is replaced by the mesh generation
and the Fast-BEM step.

A possible enhancement would be to formulated this problem as an optimization
problem with some curvature and area constraints. Indeed, the contact area of pixel-
based contact spot is typically overestimated compared to its asymptotic limit as the pixel
size tends to zero. A numerical error for the asymptotic area denoted by A∗, as defined in
the color frame below. An error compensation technique could be used for this purpose
and could be integrated in the optimization problem.

https://github.com/vyastreb/HBEM
https://github.com/vyastreb/HBEM
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Figure 4.32: Representation of the mesh for a conductive layer.

Model: Accurate contact area computation

The area of pixelized contact spot depends on the grid size. This area tends to A∗when
the pixel size δx tends to 0 and this convergence limit could be estimated as

A∗ ≈ Ad −
π − 1 + log 2

24
Sd∆x, (4.12)

where Ad, Sd represent the area and the perimeter for pixelized contact spot, respec-
tively. Here the coefficient (π − 1 + log 2)/24 ≈ 0.118 indicates by how much the
contact area measured on the border pixels is overestimated compared to its limit
value [Yastrebov et al., 2017a].

An illustration of the mesh construction for an oxidized contact surface is presented
Fig. 4.32 and 4.33. In Fig.4.32, the oxide patches are depicted in grey, while the green
patches represents the real contact surfaces. The countours of conductive spots are plotted
in green color. A zooming view is proposed in Fig.4.33 for the red frame, showcasing the
mesh created with an edge mesh parameter of h/L = 1/512.
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Figure 4.33: Representation of the mesh for a conductive layer.

BEM results for contact area and oxide layers

The results of normal flux computed with BEM for the conductive area Fig. 4.32 are
displayed in Fig.4.34. Other results are presented Fig.4.35, taking into account ko

l = 32
and an oxide fraction of ϕo = 20%. For both of these result maps, the flux is normalized
to j◦,Holm = 2Φo/(πKαHolm), which represents the flux at the center of a circular spot with
a radius of αHolm.

The result maps demonstrate a rise in the flux in spots that are distanced from the
others. The nominal size of these spots is less significant, although a singularity persists at
the edges of the spots. In the map shown in Fig.4.35, the construction of the Bezier curves
overlaps with the oxide spots. Conversely, in the scenario depicted in Fig.4.34, the Bezier
curves appear to more accurately accommodate the oxide patches, owing to their larger
nominal size. These two maps, initially based on identical contact area definitions, end up
being significantly altered by the presence of oxide in conjunction with the construction
of Bezier surfaces, particularly in the case of larger spots.

The analysis of these outcomes, along with the extrapolation of total fluxes, leads to
a comparison with the results obtained from FFT-BEM. These comparative findings are
displayed in Fig. 4.36, expressed in terms of normalized discrepancy. The flux values
determined by BEM exhibit a variance of about 3% when compared to the outcomes from
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FFT-BEM computations. This variance is relatively minor, in regard of the differences
in the morphology of the conduction spots. BEM calculations are generally expected to
yield higher flux estimation compared to the one obtaine from FFT-BEM, especially after
the extrapolation.

αHolm

0 2
π

1 2 3 4

jn/j◦,Holm

Figure 4.34: Representation of results for normal flux computed with BEM

4.5 Conclusion

This section focused on the contact problem originally conceived for the constriction
resistance at real contact interfaces. This study has enabled us to slightly revisit the
pioneering works by Holm and Greenwood and combine FFT-BEM with Fast-BEM to
handle a weakly coupled problem between contact and conductivity between rough
surfaces.
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4.5.1 Multi-spots area

Aiming to describe more realistic contact area, the study has initially proposed to replace
the circular spots with flower-shapes contact spots. Greenwood’s model can be adapted
by making modifications in the term of self-resistance. Compared to BEM results, it still
demonstrates its accuracy. But the discrepancy from BEM-results depends more on the
number of spots enclosed in the multi-spots area than on the density of contact. Further
work is needed to testify of its precision for non-uniform density of contact, as described
by [Greenwood and Tripp, 1967].

4.5.2 Results on real contact area with oxidation

In order to extend this study to realistic cases, we have finally studied conduction between
rough surfaces in contact. The contact surfaces are defined as parabolic surfaces with
additional roughness. The resulting contact areas are composed of close or already
coalesced contact spots. This study allowed us to compare our Fast-BEM results with those
obtained by FFT-BEM. Results obtained for a circular spot serve to attest the precision
of two methods to obtain conductivity: incremental stiffness calculation or flat-punch
indentation.

First, this study gave insights into conduction between rough surfaces in case of oxide-
free surfaces, leading to a new definition of the Holm’s radius. The study of conduction
and the comparison with the results of oxidized surfaces have emphasized the influence
of the ratio of oxidation. The conductivity discrepancy between oxide-free and oxidized
surface is not proportional to the surface fraction of oxides, and also depends on the
size of the contact surface. Comparing these FFT-BEM results with those obtained by
Fast-BEM, by changing the geometric definition of the contact areas, confirms an error of
few percent only. This error would be due to the change in morphology of the spots and
more accurate accounting of complex spot boundaries captured by Fast-BEM.

4.5.3 Conclusion

This section has allowed us to study the effects of interaction between spots within
real contact areas and the influence of oxidation on conduction. Conduction remains
dominated by the size of the real contact area, which can be defined by the continuous
Holm’s radius. Conduction does not decrease proportionally to the oxidized surface, as
the latter ultimately has little impact on the Holm’s radius of the cluster.
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Figure 4.35: Representation of results for normal flux computed with BEM
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Figure 4.36: Relative simulation error between FFT and BEM.



CHAPTER 5

Conclusion

Conclusions

Since the earliest studies of contact between rough surfaces, the origin of constriction
resistance emphasizes the reduction of the conductive section at the contact interface be-
tween solids. This phenomenon occurs in both electrical and thermal contacts, originating
at the microscopic scale, where the real contact area is observed. This thesis has delved
into the problem of constriction resistance by the resolution of the conduction problem in
its static regime at the contact interface.

This problem in its simplest formulation is linear, defined at the contact interface,
for a semi-infinite geometry. Thus the Boundary Element Method (BEM) is particularly
well-suited, and this thesis is also the opportunity to adapt the BEM implementation
for this study. To the best of our knowledge, this method has not been used for solving
constriction resistance problems since Nakamura’s studies [Nakamura, 1993] in the 1990s.
To address prohibitively high memory and construction complexity, a Fast-BEM version
has been developed. This implementation uses low-rank approximations (ACA+& SVD),
enabled by the use ofH-matrices. It has allowed us to handle larger problems for complex
conduction surfaces requiring strong mesh refinement. This method can also be used for
solving boundary elastic problems.

Returning to the initial problem of constriction resistance, and taking into account
the observation of real contact surface, this method has been first applied to the problem
of spots with complex geometry. Despite the apparent simplicity of the conduction
problem, analytical solutions exist only for elliptical and annular contact spots. More
complex spots have been studied here, highlighting the influence of certain geometric
parameters. Flower-, star-, and gear-shaped contact spots have highlighted the role of
the number of ”petals”. It has been noted that for a large number of petals, equivalent
to a spot with a very ”rough” contour, the flux value remains asymptotically lower than
that of a circumscribed circular spot. More complex spots have been analyzed with a
complete set of roughness parameters including fractal dimension and three first spectral
moments. Their analysis was supported by the normalization of the transmitted flux and
by analogy with multi-petal spot, a geometrically complete phenomenological model was
suggested. This part is concluded by a study of truly fractal spots – the Koch snowflake.

Finally, we analyzed the most realistic situation when conductivity is determined by
the complex area formed by the contact of rough surfaces. Starting from a simple multi-
spot model, where every spot has a flower-shaped geometry, we adapted the Greenwood
constriction model to capture such geometries and validated the results with full BEM
simulations. Further a realistic morphology of contact interfaces was reproduced by
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FFT-BEM solver (Tamaas) which was also used to solve conductivity problems based on
the normal stiffness analogy. We introduced a continuous version of the Holm’s radius
which gives a simplified model for the constriction resistance of contact clusters. In
practice, however, the conduction surface is often reduced due to oxidation. A model
for generating oxide films was constructed based on a self-affine random field. We
then solved the conductivity problem combining the true contact area with oxide-free
conductive zones using both FFT-BEM and Fast-BEM. It could be demonstrated that the
drop in conductivity is not proportional, and only weakly depends on the oxide surface
fraction. The Holm’s radius is merely affected by the considered range of oxide fractions.

Our Fast-BEM Python implementation is shared as open-source
code [Beguin and Yastrebov, 2023].

Perspectives

This work can now serve as a foundation for studying other forms of contact spots and
real contact areas. Particularly, shapes with non-injective contours in terms of the angular
coordinate can be studied, such as those occurring in real contact areas between rough
surfaces.

Regarding the study of conduction within real contact areas, the analysis of our results
could be improved in terms of accuracy and geometrical and physical interpretation.
The average size of oxide spots, the density of oxide patch and the Holm radius could be
further explored to carry out such an analysis. This analysis would allow us to move
beyond the current framework which is constrained by parameterization of a self-affine
random field used to construct oxide spots. A more physical model, potentially making
a link between oxidation and roughness, would be more physically justifiable. The non-
proportional relation between the oxide surface fraction and the drop of conductivity
could be explained through the annulus contact spot. The average size of oxide patch
overlaying the real contact area, might be responsible for the cubic conductivity drop
∼ (1 − (ϕo/A)3) where Ac is the contact area.

Finally, our Fast-BEM model still suffers from a lack of speed, in spite of several
enhancements in its implementation. Our work has already made it operational and
accessible as Python open-source code. But this implementation could be considered
as a prototype for implementation with a more powerful and optimized programming
language such as C++, which could truly reveal the potential of the Fast-BEM and the
H-matrices. The implementation of additional tools, such as optimization of the matrix-
vector product for iterative solvers could be also considered for the future. This code could
eventually serve as a development base for modeling other physical phenomena, such
as thermal diffusion or elasticity, and could be used in coupling with other methods like
FFT-BEM and Finite Element Method. In addition to the performance, a methodology
could be further adjusted. The particularity of the conductivity problem with singularity
at contact boundary suggests that the choice of Legendre polynomial for interpolation
functions at elements near the edge is not optimal and that this singularity could be
properly captured with specific interpolation. Furthermore, a sub- or super-parametric
elements could be considered with the objective to enhance the model accuracy.



APPENDIX A

Transient solution for thermal diffusion problem between two bars

Figure A.1: Illustration of a thermal contact problem between two bars.

We consider a problem of two bars of length L and thermal diffusivity βi, i = 1, 2
which are brought in contact1 as shown in Fig. A.1. The thermal field is given by T(1)(x, t)
for x ∈ [0,L] (left bar), and T(2)(x,t) for x ∈ [L, 2L] (right bar) and for t ∈ [0, t0]. Bars are
assumed cylindrical of radius R, we assume that R/L ≪ 1, that is why the thermal field
is assumed to depend on the x coordinate only disregarding the temperature variation
along the radius. This problem illustrates heat exchange between two bars brought in
contact and surrounded by a fluid at a temperature of Tout ensuring a convective heat
exchange with parameters αi, i = 1, 2, αi = 2h0/(RρiCpi), where h0 is the convective factor,
ρi and Cpi are the density and heat capacity of the i-th bar The temperature in two bars
follows the diffusion equation supplemented with a convective heat exchange with the
environment:

β1
∂2T(1)

∂x2 − α1(T(1)
− Tout) =

∂T(1)

∂t
, for x ∈ [0,L] (A.1a)

β2
∂2T(2)

∂x2 − α2(T(2)
− Tout) =

∂T(2)

∂t
, for x ∈ [L, 2L] (A.1b)

Assuming the following form for temperature T = T(x, t) and defining the axial flux as
j(i)n = −ki∂T(i)/∂x, where ki is the conductivity of bar i, the following boundary conditions
are defined for each bar. For bar 1:

T(1)(0, t) = T(1)
0 (A.2)

j(1)
n (L−, t) = hc

(
T(1)(L−, t) − T(2)(L+, t)

)
(A.3)

1To the best of our knowledge the solution for this elementary problem is not available in the literature.
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For bar 2:

T(2)(2L, t) = T(2)
0 (A.4)

j(2)
n (L+, t) = −hc

(
T(1)(L−, t) − T(2)(L+, t)

)
, (A.5)

where hc is the heat exchange parameter (W / (m2
· K)) in the contact interface controlling

the heat for two surfaces at different temperatures brought in contact. This conductivity
ensures the heat exchange between bars and renders their solutions coupled. The initial
conditions are

T(1) = T(1)
0 , T(2) = T(2)

0 . (A.6)

The combination of Dirichlet and coupled Neumann boundary conditions require to
solve this problem using Laplace transform. Laplace transform denoted by L is given by
the following integral transformation:

Θ(i)(x, p) = L
{
T(i)

}
(p) =

∫ +∞

0
e−ptT(i)(x, t)dt

Laplace transform allows to streamline the time derivative resulting in the following
equations:

β1
∂2Θ(1)(x, p)
∂x2 − (α1 + p)Θ(1)(x, p) = α1

Tout

p
(A.7a)

β2
∂2Θ(2)(x, p)
∂x2 − (α2 + p)Θ(2)(xp) = α2

Tout

p
(A.7b)

These quasi ordinary differential equations could be solved as a sum of two hyperbolic
functions for x combined with a particular solution:

Θi = Ai(p) sinh (qix)+Bi(p) cosh (qix)+Θi,0(p), qi =

√
p + αi

βi
, Θi,0(p) = Tout

(
1
p
−

1
p + αi

)
(A.8)

Where Ai and Bi are two function of Laplace variable p, and defined in agreement with
the boundary conditions, qi is a wavelength function of p, andΘi,0 is a function prescribed
by the convective exchange with the ambient media.

The Laplace transform can be inverted using a semi-numerical method proposed by
Stehfest [Stehfest, 1970], as developed below:

T(i)(t) =
log (2)

t

N∑
j=1

V jΘ

(
j log (2)

t

)
(A.9)

V j = (−1)
N
2 +1

min ( j,N2 )∑
k=⌊ j+1

2 ⌋

k
N
2 (2k)!(

N
2 − k

)
!k!(k − 1)!( j − k)!(2k − 1)!

(A.10)

The precision of this method increases with the number of taken modes N, but in practice
N = 10 shows already quite accurate results for this problem.

Illustration of such a solution is presented in Fig A.2, represented in dashed lines, and
compared with FEM results shown in dots. These results are displayed for three distinct
time step, namely at 10 minutes, 1 hour, and 10 hours. The conductivity coefficients are
set as h0 = 10 W.m−2.K−1 and hc = 100 W.m−2.K−1. The radii of the cylindrical bar is set
to R = 0.01 m, with the one on the right-hand side made of copper, and the other on the
left-hand side, assumed to be iron. Below we summarize physical parameters used for
these materials.
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Material coefficients for iron :

k1 = 50.2 W.m−2.K−1

Cp,1 = 500 J.kg−1.K−1

ρ1 = 7500 kg.m−3

Material coefficients for copper :

k2 = 390 W.m−2.K−1

Cp,2 = 385 J.kg−1.K−1

ρ2 = 8920 kg.m−3

The following temperatures were used:

T(1)
0 = 293.15K, T(2)

0 = 313.15K, Tout = 283.15K

As could be seen, the stationary solution, towards which the system converged after
≈ 10 hours, expectedly, preserves a temperature discontinuity at the contact interface
and the interface fluxes on the left and right are compatible throughout the time. The
comparison with the finite element solution demonstrates a very good agreement even
for only N = 10 modes in Stehfest inversion technique.

0 0.5L L 1.5L 2L

Coordinate, x

−0.5

0.0

0.5

1.0

(T
−
T

(1
)

0
)/

(T
(2

)
0
−
T

(1
)

0
)

Tout

copper

iron

t = 10 min

t = 1 h

t = 10 h

Figure A.2: Spatial distribution of a transient temperature evolution in two bars made of
iron (left) and copper (right) which are brought in contact in a convective media at low
temperature Tout. Markers show the finite element solution and dashed line represent our
analytical solution.
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APPENDIX B

Additional results for Fast-BEM

B.1 Integration of H-function on the boundary

Let assume S a regular surface, oriented by its normal vector, n, and with x the observation
point. ∫

S
H(x, y)dSy =

∫
S

−r,n
4πr2 dSy

It seems more convenient to compute this integral using spherical coordinates. The
set of unit vector is defined as (er, eϕ, eθ). The set of coordinate is defined by (r, ϕ, θ), with
r > 0 , ϕ ∈ [0, π] and θ ∈ [0, 2π] . The radius coordinate is defined r = r(ϕ, θ)er.

The domain of integration is split in half, describing the space of S embedded in the
body surrounding the observation point. The angle ϕ is rather defined lying within the
interval [0, π/2].

The classical parametrization enables to define r,n, as,

r,n = er.n

The normal vector multiplied by the element of integration can be expressed in terms
of the vectors r,ϕ, r,θ,

ndSy = (r,ϕ ∧ r,θ)dϕdθ

Those derivatives can be explicitly expressed as follows,

r,ϕ = r,ϕer + reϕ, r,θ = r,θer + r sin(ϕ)eθ

Ultimately,
r,ndSy = r2 sin(ϕ)dϕdθ

Substituting this term in the integral of H, it results in,∫
S

H(x, y)dSy =

∫ 2π

0

∫ π/2

0

sin(ϕ)
4π

dϕdθ

∫
S

H(x, y)dSy =
1
2

for x ∈ S (B.1)
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ξ1

ξ2

x1 = (0, 0)

x2 = (1, 0)

x3 = (0, 1)

ξ1

ξ2

x1 = (1,−1)

x2 = (1, 1)x3 = (−1, 1)

x4 = (−1,−1)

B.2 Element of reference and shape function

Triangular element Shape functions (ξ1, ξ2) ∈ [0, 1]2,

N1(ξ1, ξ2) = 1 − ξ1 − ξ2

N2(ξ1, ξ2) = ξ1

N3(ξ1, ξ2) = ξ2

Value at mesh node
Ni(x j) = δi, j

Square element Shape functions (ξ1, ξ2) ∈ [−1, 1]2,

N1(ξ1, ξ2) =
(1 + ξ1

2

) (1 + ξ2

2

)
N2(ξ1, ξ2) =

(1 − ξ1

2

) (1 + ξ2

2

)
N3(ξ1, ξ2) =

(1 − ξ1

2

) (1 − ξ2

2

)
N4(ξ1, ξ2) =

(1 + ξ1

2

) (1 − ξ2

2

)
The value of the shaped function at the nodes is defined as,

Ni(x j) = δi, j

With δ is the Kronecker’s symbol.

B.3 Quasi-singular integration

B.3.1 Cubic transformation

Coefficient of the cubic polynomial The cubic transformation aims to provide a change
of variable following a third order polynomial,

ηi = aξ3
i + bξ2

i + cξi + d, i ∈ {1, 2}

Where the coefficients a, b, c, d are adjusted in function of the distance d from the obser-
vation points ξ̄, to the element of reference ∆e. Its first derivative is defined using the
following law,
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Jη(ξ̄) =
dη
dξ

∣∣∣∣∣
ξ̄
=


0.85 + 0.24ln(d), 0.05 ≤ d ≤ 1.3
0.893 + 0.0832ln(d), 1.3 ≤ d ≤ 3.618
1, 3.618 ≤ d

The slope rate is lowered by the law , to gather more the points of integration, around
ξ̄, when d decreases as well. It varies from 0.1 to 1. When the J = 1, there would not be
any transformation applied, readily η = ξ, given by Eq. (2.61). This ensures to gather the
integration point around ξ̄. This condition is defined in terms of convexity change at the
point ξ̄, as,

d2η

dξ2

∣∣∣∣∣∣
ξ̄

= 0

Let consider η̄ = ξ̄, making η(ξ̄) = ξ̄. Using the root formula of cubic polynom, we get
the definition of ξ̄.

ξ̄ =
[
−q +

√
q2 + p3

]1/3
+ [−q −

√
q2 + p3]

1/3
+

η̄

1 + 2Jη

q =
1

2(1 + Jη)

[
1

2(2 + Jη)

(
η̄(3 − 2J) −

2η̄3

1 + 2Jη

)
− η̄

]
p =

1
3(1 + Jη)2

[
4Jη(1 − Jη) + 3(1 − η̄2)

]

Change of integration∫
∂Ae

G(x, y)dSy =

∫
∆e

G(x, y(ξ))Jξ(ξ)dSξ

⇔ =

∫
∆e

G(x, y(ξ(η)))Jξ(ξ(η))|η′1(ξ1)η′2(ξ2)|dSη

The integrating weights are modified using the chain formula of the change of variable.
The modified weights, denoted by ω̃, derive from the latter integral, as,

ω̃i, j = ωiω jJξ(ξi, ξ j)|η′1(ξi)η′2(ξ j)|

Jacobian function, Jη, is set as the product of the separate function derivatives. The
weights ω̃i, j refer to the following weighted sum, which used for the integral computation
as ∫

Ae

G(x, y)dSy ≈
∑

i

∑
j

ω̃i, jG
(
x, y

(
ξ(ηi, η j)

))

Cylindric transformation

Parametrization of radial parameter As presented in Fig. B.1, for each triangle ∆e,n, the
angle varies in the interval [θm

n , θ
M
n ]. The maximal radius is expressed in function of hn,

αn, as follows,

ρmax,n =
hn

cos(θ − αn)
, θ ∈ [θm

n , θ
M
n ]
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ξ1
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ξ̄

ξ̄′

h2

∆e,1

∆e,2

∆e,3

θm2

θM2

Figure B.1: Schematic of the division of the square element on integration using the
triangular separation.

Using, the Gauss point with coordinate (xi, x j), we can define new couple of coordinate
using the cylindric parametrization (θi, ρi, j), as expressed below,

θi =
(θM

n − θ
m
n )

2
(xi + 1) + θm

n

ρi, j =
ρmax,n(θi)

2
(x j + 1)

The couple coordinate (θi, ρi, j) are adjusted to be defined in the intervals [θm
n , θ

M
n ], and

[0, ρmax,i] respectively. The new cylindrical coordinates are centered around the centroid
point (0, 0). To get the final coordinate of the integration points, this needs to offset the
coordinate by the position of ξ̄′, which finally defines these coordinates, as,

ξ1 = ρcos(θ) + ξ̄′1
ξ2 = ρsin(θ) + ξ̄′2

Change of integration The quasi-singular integral can be computed as the sum of
integral on the separate triangles, denoted by In.

I =
∑

n
In

Each integral is expressed as followed, using the radial transformation and the agreed
intervals for θ and ρ

In =

∫ θM
n

θm
n

∫ ρmax,n(θ)

0
G

(
x, y(ξ(ρ, θ)

)
Jξ(ξ)ρdρdθ

Similarly to the cubic transformation, the weights is adapted to take advantage of the
Gaussian quadrature integration, based on the Gauss point coordinates (xi, x j),

ω̃i, j = ωiω j
(θM

n − θ
m
n )ρmax,n(θi)

4
ρi, j

Finally, it leads to the following expression for In, on the triangular element part ∆e,n,
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In =
∑

j

∑
i

ω̃i, jJξ(ξ(ρi, j, θi))G(x, y(ξ(ρi, j, θ j))

B.4 Singular integration

B.4.1 Parametrization

ξ1

ξ2

0

x
1/3

1/3

∆e,1

∆e,2

∆e,3

θM2

α2

θm2

ξ1

ξ2

x

∆e,1

∆e,2

∆e,3

∆e,4

h1, α1

θm1
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B.4.2 Triangular singular integration

Analytical expression The exact expression of the integral of the Green function of the
triangle of reference can be given. The expression is divided in three integrals corre-
sponding to the triangles, ∆e,1, ∆e,2, and ∆e,3.

I0 = I∆e,1 + I∆e,2 + I∆e,3 = 2I∆e,1 + I∆e,2

The integrals are expressed using the cylindric transformation, and the expression of
the contour in term of the 1/ cos(θ − αi).

I0 = 2
∫ θM

1

θm
1

dθ
4π cos(θ − α1)

+ 22
∫ α2

θm
2

dθ
4π cos(θ − α2)

Using Wolfram software, one may find a numerical expression for these integrals,

I∆e,1 =
1

12π
log

{
cot

(
π
8

)
cot

(1
2

tan−1(
1
2

)
)}
≈ 0.06167

I∆e,2 =
1

6
√

2π
sinh−1(3) ≈ 0.06822

ξ1

ξ2

0 1

1

ξ1

ξ2

0 1

1

Figure B.2: Distribution of the integrating point for the cubic (left) , cylindric (center),
and PART (right) transformations in the case of the singular integral computation

Cylindric and PART result The figure B.2 shows distribution of point of integration,
cylindric one on the left-hand side, and PART distribution on the right-hand side.

The numerical value given by those distribution might be compared with the value
of I0. Those results are presented in Fig. B.3. The error decreases as the number of
integration point increases. The two distributions are giving the same results, similarly
to the quadrangular reference element Fig. 2.20.

B.5 Approximations

B.5.1 ACA-full Algorithm

An algorithm for full ACA is presented in box 10.

B.5.2 ACA+

An algorithm for ACA+ is presented in box 11.
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Figure B.3: Error on the numerical integration in function of the number of integration
point

B.6 Cluster tree of a non-compact shape

This section further study the cluster definition through various methods, on non-compact
contours for mesh geometry model on a Marsupilami’s contour. The mesh, created in a
manner akin to the contact spot, is refined at the edges and coarser in the middle, featuring
a non-uniform refinement. This mesh takes the form of and composed of 22, 733 elements.

Three different clustering methods at level l = 5 are depicted in the subsequent
figures: median separation in Fig. B.4, geometric separation in Fig. B.5, and K-means clustering
in Fig. B.5. These images highlight the variations in cluster geometry. The size of the
clusters is very different from one to another across different clustering methods, even
with geometric separation. However, an equal number of elements is always maintained
across clusters using median separation.

Geometrical characteristics are summarized in Fig. B.7 and Fig. B.8, for different depths
lm. From Fig. B.7, it is observable that the ratio of elements in the clusters is preserved
with median separation. Surprisingly, geometric separation, intended to produce clusters
with equal box sizes, does not maintain this feature for this mesh geometry, and performs
worse than the others. Fig. B.5 provides some insight, considering the size of C14(5) in
comparison with others, for example. This will lead to an unbalancedH-tree.
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Algorithm 10: Implementation of ACA-full
Data: Global, ϵ

1 Function Aca-full (M):
2 δ← max (Mk)
3 is, js ← Argmax (Mk)
4 A.append( Mk[:, is] )
5 B.append( Mk[ js, :]/δ )
6 Rk =M − A.B
7 while ∥M − Rk∥F > ϵ∥M∥F do
8 δ← max (Rk)
9 if δ == 0 then

10 return A, B

11 is, js ← Argmax (Rk)
12 A.append( Rk[:, is] )
13 B.append( Rk[ js, :]/δ )
14 Rk = Rk − A.B

15 return A, B
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Algorithm 11: Implementation of ACA+
Data: Global, ϵ

1 Function Aca-plus (σ, τ, f-bem):
2 Mc,R← Init-M (m,n), Init-M (m,n)
3 jre f = 0
4 Mc[:, jre f ] = f-bem (σ, τ[ jre f ])
5 ire f = Argmin (Mc[:, jre f ])
6 Mc[ire f , :] = f-bem (σ[ire f ], τ)
7 cre f , lre f ←Mc[:, jre f ],Mc[ire f , :]
8 Pc,Pl ← [ ], [ ]
9 Ak,Bk ← [ ], [ ]

10 Continue← True
11 while Continue do
12 δl, il ← Argmax (lre f ,Pl)
13 δc, jc ← Argmax (cre f ,Pc)
14 if δc > δl then
15 Mc[il, :] = f-bem (σ[il], τ)
16 bk =Mc[il, :] − Rk[is, :]
17 δ, js = Argmax (|bk|)
18 Mc[:, js] = f-bem (σ, τ[ js])
19 ak = (Mc[:, js] − Rk[:, js])/δ

20 else
21 Mc[:, jc] = f-bem (σ, τ[ jc])
22 ak =Mc[:, jc] − Rk[:, jc]
23 δ, is = Argmax (|ak|)
24 Mc[is, :] = f-bem (σ[is], τ)
25 bk = (Mc[is, :] − Rk[is, :])/δ

26 Pl.append(il)
27 Pc.append( jc)
28 r′k = |ak|.|bk|

29 rk = rk+ Residual (Ak, ak, Bk, bk) +r′k
30 if rk < ϵr′k then
31 Continue = True

32 Ak.append(ak)
33 Bk.append(bk)
34 if is = ire f then
35 ire f = Next-Arg (Pl)
36 Mc[:, jre f ]← f-bem (σ, τ[ jre f ])
37 lre f ←Mc[:, jre f ]

38 if js = jre f then
39 jre f = Next-Arg (Pc)
40 Mc[ire f , :]← f-bem (σ[ire f ], τ)
41 cre f ←Mc[ire f , :]

42 return A, B
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Figure B.4: Clustering using median separation for a mesh composed of Ne = 22733 at
the level l = 5
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APPENDIX C

Conductivity of spots with complex shape

C.1 Geometrical characteristics of self-affine spots

In Fig. C.1, the analytical form for the standard deviation of self-affine spots σs Eq. (3.21)
is compared with the one evaluated over 1 000 generated spots for each combination
of generative parameters: ξ = 0.05, kl ∈ {2, 4, 8, 16, 32, 64, 126}, ζ ∈ {4, 8, 16, 32} and H ∈
[0.2, 0.8]. These results are quite sensitive to kl, but the maximal relative error is 0.05% for
kl = 32 and ζ = 8.

The second m2 and the forth m4 moments have been computed for the same set of
generative parameters over the same 1 000 spots. These moments could be computed in
three different ways. First, the discretized contour geometry could be used to evaluate
these moments mD

p using Eq. (3.22). The discretization consists of splitting the contour in
N = max{10 000, 100ks} straight segments with dθ = 2π/N and evaluation gradient and
laplacian as

∇ri =
2(ri+1 − ri)

(ri+1 + ri)dθ
, ∆ri =

4(ri+1 − 2ri + ri−1)
(ri+1 + 2ri + ri−1)2dθ2 , (C.1)

where ri = r(idθ), i = 1,N. This method was used throughout the paper. Second,
the moments could be approximated by discrete sums of all mode contributions as in
Eq. (3.23):

mS
p =

(r0ξ)2

2

ks∑
kl

kp
(

k
kl

)−(1+2H)

. (C.2)

This method is however valid only for relatively small values of ξ because it ignores the
exponential transformation (3.18). Third, for sufficiently large values of kl, these discrete
sums could be turned into integrals with wavenumber k becoming continuum variables
of integration:

mC
p =

1
2

∫ ζkl

kl

(r(k))2 kpdk, (C.3)

where r(k) = ξr0(k/kl)−H−0.5. Analytical formulas derive from the development for the
moments mC

0 , mC
2 and mC

4 , as follows:

mC
0 = −

(r0ξ)2kl

4H

(
ζ−2H

− 1
)
, mC

2 = −
(r0ξ)2k3

l

2(2 − 2H)

(
ζ2−2H

− 1
)
, mC

4 = −
(r0ξ)2k5

l

2(4 − 2H)

(
ζ4−2H

− 1
)
.

(C.4)
For high values of kl the discrete spectrum is closer to a continuous one, and thus the
spectral moments can be deduced from Eq. (3.23) as detailed by Nayak [Nayak, 1971].
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These analytical values are compared with the numerically evaluated ones in Fig. C.2 and
Fig. C.3. The maximum deviation is of only 0.7 % for the m2 for parameters kl = 2, ζ = 4
and H = 0.2. However, for m4 an average discrepancy of 10 % is observed and could raise
to as much as 27 % in certain instances. Nevertheless, in all results presented in the paper
only actual values of the moments and of their combinations were used.

The Nayak’s parameter is determined using the moments m0, m2 and m4,α = m0m4/m2
2.

The three models mentioned above could be used to compute the Nayak parameter as
αD, αS and αC, respectively. The average values computed over a set of 1 000 spots
are compared in Fig C.4. This analysis demonstrates that a continuum model could be
successfully used in practical applications. In the limit of high magnification ζ, the second
moment and the Nayak parameter scale as mC

2 ∼ ζ
2−2H and αC

∼ ζ2H.
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Figure C.1: Results of standard deviation by spectral and sample analysis, with
kl = {2, 4, 8, 16, 32, 64, 128} in both figures: (a) ζ = {4, 8, 16, 32} and H = 0.2; (b)
H = {0.2, 0.4, 0.6, 0.8} and ζ = 4.
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Figure C.2: Results of mean square gradient by spectral and sample analysis, with
kl = {2, 4, 8, 16, 32, 64, 128} in both figures: (a) ζ = {4, 8, 16, 32} and H = 0.2; (b)
H = {0.2, 0.4, 0.6, 0.8} and ζ = 4.

C.2 Physical consistency of the phenomenological model

The phenomenological model of flux Eqs. (3.32),(3.33) exhibits an increasing behavior with
respect of m2, but decreases with α. Nevertheless, from general physical considerations,
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Figure C.3: Results of mean square Laplacian, with kl = {2, 4, 8, 16, 32, 64, 128} in both
figures: (a) ζ = {4, 8, 16, 32} and H = 0.2; (b) H = {0.2, 0.4, 0.6, 0.8} and ζ = 4.

Figure C.4: Comparison of different models which could be used to evaluate spectral
moments and the Nayak parameter: (1) discretized geometrical evaluation, (2) discrete
sum for the generative function, (3) continuous version of this discrete sum.

we conjecture that the flux should be a monotonically non-decreasing function of the
magnification ζ. So, we require that the derivative of flux Q with respect to magnification
ζ remains non-negative:

∂Q
∂ζ
=
∂Q
∂m2

∂m2

∂ζ
+
∂Q
∂α
∂α
∂ζ
≥ 0 (C.5)
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The terms ∂Q/∂m2 and ∂Q/∂α could be redily derived from Eq. (3.33).

∂Q
∂m2

= a
b

2
√

m2(b
√

m2 + 1)2
(1 + cH)

(
1 +

d
eα f + 1

)
(C.6a)

∂Q
∂α
= a

{
1 −

b
b
√

m2 + 1

}
(1 + cH)

−de fα f−1

(eα f + 1)2
(C.6b)

The derivatives of m2 and α with respect to ζ could be found from Eq.(C.4), resulting in
the following asymptotic forms:

∂Q
∂m2

∂m2

∂ζ
∼

1
√

m2

(√
m2 + 1

)2
∂m2

∂ζ
∼ ζ−2+H (C.7a)

∂Q
∂α
∂α
∂ζ
∼

α f−1(
α f + 1

)2
∂α
∂ζ
∼ ζ−2 f H−1 (C.7b)

These expressions enable us to define a constraint criteria to ensure the derivative of the
flux law with respect to ζ remains non-negative for all ζ. The exponent of ζ in Eq. (C.7a)
must be lower than the one in Eq.(C.7a), resulting in the following inequality that the
exponent f should satisfy:

f ≥
1 −H

2H
(C.8)

The problem with this constraint is that it results in too high values of f for small H
and, ultimately, it diverges for H → 0. In the current study we set the minimal value
of the Hurst exponent to H = 0.25 thus resulting in f ≥ 1.5. The results for derivatives
using the continuous expressions for m2 and α are presented Fig. C.5 for H = 0.25, kl = 8,
and ξ = 0.05, and the fitting parameters shown in Table 3.6. The two derivative terms
are distinguished: one positive, as given by Eq. (C.6a), and the other negative, as given
by Eq. (C.6a). The full derivative remains positive, however, thus keeping the required
assumptions true, even for value of ζ significantly far from the initial set of parameter. The
absolute values for these derivatives are also depicted in inset in log-log scale, showing
similar power-laws of the two competing derivatives (in dots) for high values of ζ.
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APPENDIX D

HBEM repository

Ou implementation of Fast-BEM [Beguin and Yastrebov, 2023] follows the folder organi-
zation below. The folder src contains two folders Gmsh, Hierarchy. The first one includes
all the functions related to reading mesh files mesh.msh, created by GMSH software, in
format .2 or .4. These mesh files are ASCII files and include all the coordinates and all el-
ement definition. The folder Hierarchy encloses the functions related to the integration
in the folder src, the treatment of theH-matrices, and finally the function FastBem called
for the fast integration.
root/

src/

Gmsh/

GeomGmshRead()

meshrotate()

meshsmirror()

Hierarchy/

Cluster/

split()

splittilt()

splitkmeans()

is()

src

optim

G()

interg6()

integpartt()

integqsing()

integsing()

Harithmetic

ACAplus()

HOptim()

HAdmi()

HAdd()

HMatVect()

FastInteg()

tests

examples
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des Vereines Deutscher Ingenieure, 52(17):645–654.

[Meymand et al., 2016] Meymand, S. Z., Keylin, A., and Ahmadian, M. (2016). A survey
of wheel–rail contact models for rail vehicles. Vehicle System Dynamics, 54(3):386–428.

[Monti et al., 2021] Monti, J. M., Pastewka, L., and Robbins, M. O. (2021). Green’s function
method for dynamic contact calculations. Physical Review E, 103(5):053305.

[Monti et al., 2022] Monti, J. M., Pastewka, L., and Robbins, M. O. (2022). Fractal geome-
try of contacting patches in rough elastic contacts. Journal of the Mechanics and Physics
of Solids, 160:104797.



228 BIBLIOGRAPHY

[Nakamura, 1993] Nakamura, M. (1993). Constriction resistance of conducting spots by
the boundary element method. IEEE transactions on components, hybrids, and manufac-
turing technology, 16(3):339–343.

[Nakamura, 1995] Nakamura, M. (1995). Computer simulation for the constriction resis-
tance depending on the form of conducting spots. IEEE Transactions on Components,
Packaging, and Manufacturing Technology: Part A, 18(2):382–384.

[Nakamura and Minowa, 1986] Nakamura, M. and Minowa, I. (1986). Computer simula-
tion for the conductance of a contact interface. IEEE transactions on components, Hybrids,
and Manufacturing technology, 9(2):150–155.

[Nakamura and Minowa, 1989] Nakamura, M. and Minowa, I. (1989). Film resistance
and constriction effect of current in a contact interface. IEEE transactions on components,
hybrids, and manufacturing technology, 12(1):109–113.

[Nayak, 1971] Nayak, P. R. (1971). Random process model of rough surfaces. Journal of
tribology.

[Nayak, 1973] Nayak, P. R. (1973). Random process model of rough surfaces in plastic
contact. Wear, 26(3):305–333.

[Osias and Tripp, 1966] Osias, J. and Tripp, J. (1966). Mechanical disruption of surface
films on metals. Wear, 9(5):388–397.

[Papangelo et al., 2017] Papangelo, A., Hoffmann, N., and Ciavarella, M. (2017). Load-
separation curves for the contact of self-affine rough surfaces. Scientific reports, 7(1):6900.

[Park et al., 2006] Park, J.-j., Kwon, K., and Cho, N. (2006). Development of a coordinate
measuring machine (cmm) touch probe using a multi-axis force sensor. Measurement
Science and Technology, 17(9):2380.

[Pastewka et al., 2013] Pastewka, L., Prodanov, N., Lorenz, B., Müser, M. H., Robbins,
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[Ye and Komvopoulos, 2003] Ye, N. and Komvopoulos, K. (2003). Indentation analysis
of elastic-plastic homogeneous and layered media: Criteria for determining the real
material hardness. J. Trib., 125(4):685–691.

[Zhang et al., 2011] Zhang, P., Lau, Y., and Gilgenbach, R. (2011). Thin film contact
resistance with dissimilar materials. Journal of Applied Physics, 109(12).

[Zhang et al., 2012] Zhang, P., Lau, Y., and Timsit, R. S. (2012). On the spreading resistance
of thin-film contacts. IEEE Transactions on electron devices, 59(7):1936–1940.





MOTS CLÉS

Conductivité, taches auto-affine, contact rugueux, oxidation, H-matrice, Fast-BEM

RÉSUMÉ

Le problème de la résistance à la conduction aux interfaces de contact représente un défi important en ingénierie. À ces interfaces, la
section réduite pour la conduction – définie comme la disparité entre les zones de contact réelles et nominales – entraı̂ne une augmen-
tation de la résistance. Ce phénomène affecte à la fois la conductivité thermique et électrique, marqué par un écart de température ou
de potentiel à l’interface. Par conséquent, c’est un phénomène multi-échelle, découlant de la rugosité des surfaces en contact et ayant
son origine à l’échelle microscopique. L’objectif de cette étude est d’approfondir notre compréhension des origines de ce phénomène.
Pour aborder le problème de conduction à l’interface de contact, une méthode des éléments de frontière rapide (BEM) a été mise en
œuvre. Cette méthode, bénéficiant d’une formulation précise en demi-espace, démontre sa précision et sa cohérence géométrique.
Simultanément, le Fast-BEM contourne la complexité excessive O(N2) associée au stockage et à la construction d’une matrice dense,
qui a été un goulot d’étranglement pour le BEM classique. Cette amélioration des performances est obtenue grâce à l’utilisation de ma-
trices hiérarchiques (H-matrices), qui bénéficient d’une approximation de bas rang, telle que l’approximation croisée adaptative partielle
(ACA+). Cette mise en œuvre réduit considérablement le stockage en mémoire, encore amélioré par l’utilisation de la décomposition en
valeurs singulières (SVD), et est finalement exploitée pour résoudre le problème avec un solveur itératif GMRES. Par conséquent, ce
nouvel outil a démontré sa capacité à aborder des problèmes de conductivité impliquant des géométries complexes.
L’étude de la conductivité commence par une tache conducteur unique sur un demi-espace. Initialement, la forme la plus simple d’une
tache non simplement connecté, un anneau, est examinée. Elle est suivie par une investigation de formes ”multi-pétales”, telles que
des fleurs, étoiles et engrenages, révélant comment le nombre de pétales impacte la conductivité. L’étude de taches isolées se conclut
par un examen élaboré de géométries auto-affines. Pour les taches multi-pétales et auto-affines, des modèles phénoménologiques
sont développés, basés sur des caractéristiques géométriques pertinentes, incluant l’exposant de Hurst et les trois premiers moments
spectraux du contour auto-affine. Ces modèles permettent de prédire la conductivité pour un nombre infini de ”pétales” et dans la limite
auto-affine fractale. Le rôle de la dimension fractale est également souligné, accompagné d’une brève exploration des flocons de Koch.
L’étude s’étend à un scénario multi-taches plus réaliste, employant le modèle de résistance à la constriction de Greenwood étendu pour
inclure des taches multi-pétales, validé par des simulations BEM. Enfin, l’étude examine la conductivité des zones de contact réelles
avec des morphologies complexes produites par le contact élastique entre surfaces rugueuses. Cette étude finale utilise la méthode
FFT-BEM pour résoudre le problème de contact et de conductivité rugueux, en s’appuyant sur une analogie de poinçon plat entre la
rigidité normale et la résistance thermique ou électrique. De plus, le problème des surfaces rugueuses oxydées est exploré, fusionnant
FFT-BEM et Fast-BEM avec des ı̂lots d’oxyde isolants construits à partir d’un champ aléatoire auto-affine. Un modèle phénoménologique
préliminaire est également suggéré.
Cette thèse représente une synthèse de la mise en œuvre de matrices H pour le Fast-BEM, combinée à une caractérisation géométrique
détaillée et une analyse physique complète de la résistance à la constriction. Cette analyse s’étend des interfaces conductrices à une
seule tache aux zones de contact oxydées de topologie complexe produites par le contact de surfaces rugueuses. Une attention
particulière a été accordée à maintenir la précision des résultats numériques. De plus, la mise en œuvre du Fast-BEM développée est
disponible en open-source pour une utilisation plus large.

ABSTRACT

The problem of conduction resistance at contact interfaces represents an important engineering challenge. At these interfaces, the
reduced section for conduction – defined as the disparity between the actual and nominal contact areas – results in increased resistance.
This phenomenon affects both thermal and electrical conductivity, marked by a temperature or potential gap at the interface. Hence, it is
a multi-scale phenomenon, stemming from the roughness of contacting surfaces and originating at the microscopic level. The objective
of this study is to deepen our understanding of this phenomenon’s origins.
To address the conduction problem at the contact interface, a Fast-Boundary Element Method (BEM) has been implemented. This
method, benefiting from an accurate half-space formulation, demonstrates its precision and geometric consistency. Simultaneously, the
Fast-BEM circumvents the excessive O(N2) complexity associated with storing and constructing a dense matrix, which has been a
bottleneck for the classical BEM. This performance enhancement is achieved through the use of hierarchical matrices (H-matrices),
which benefit from a low-rank approximation, such as Adaptive Cross Approximation+ (ACA+). This implementation significantly reduces
memory storage, further enhanced by employing Singular Value Decomposition (SVD), and is ultimately exploited in solving the problem
with a GMRES iterative solver. Consequently, this new tool has demonstrated its capability to tackle realistic conductivity problems
involving complex geometries.
The conductivity study starts with a single conductive spot on a half-space. Initially, the simplest form of a non-simply connected spot,
an annulus, is examined. This is followed by an investigation of ”multi-petal” shapes, such as flowers, stars, and gears, revealing how
the number of petals impacts conductivity. The study of single spots concludes with a elaborate examination of self-affine geometries.
For both multi-petal and self-affine spots, phenomenological models are developed, grounded in relevant geometrical characteristics,
including the Hurst exponent and the first three spectral moments of the self-affine contour. These models enable predicting conductivity
for an infinite number of ”petals” and in the fractal self-affine limit. The role of fractal dimension is also underscored, accompanied by a
brief exploration of Koch snowflakes.
The study extends to a more realistic multi-spot scenario, employing the Greenwood constriction resistance model extended to include
multi-petal spots, validated through BEM simulations. Ultimately, the study examines the conductivity of true contact areas with complex
morphologies produced by elastic contact between rough surfaces. This final study utilizes the FFT-BEM method to resolve rough contact
and conductivity problem, drawing on a flat-punch analogy between normal stiffness and thermal or electrical resistance. Additionally, the
issue of rough oxidized surfaces is explored, merging FFT-BEM and Fast-BEM with insulating oxide islands constructed from a self-affine
random field. A preliminary phenomenological model is also suggested.
This thesis represents a synthesis of H-matrices implementation for Fast-BEM, combined with detailed geometrical characterization and
a comprehensive physical analysis of constriction resistance. This analysis spans from single-spot conductive interfaces to oxidized
contact areas of complex topology produced by the contact of rough surfaces. Particular attention has been devoted to maintaining the
precision of the numerical results. Furthermore, the developed Fast-BEM implementation is available as an open-source for broader use.
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