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Pivots. The superiority of the ACA-GP compared to the classical ACA is demonstrated using a classical
Green operator for two clouds of interacting points.

Key words. Low-rank approximation, Adaptive Cross Approximation, Geometrical Pivots, Boundary
Integral Method, Hierarchical matrices.

MSC codes. 65F35, 65F30, 15A03, 65R20, 65Y20, 65F99

Supplementary material: The source code of the ACA and ACA-GP methods is available
at github.com/vyastreb/ACA, and the instance used for all studies presented in the paper is
available at github.com/vyastreb/ACA/releases/tag/v0.1.0 and archive.softwareheritage.org.
Supplementary material with all the data presented in the paper and all additional results
is available at zenodo.org/14809517.

1. Introduction. Low-rank approximation of matrices plays a crucial role in the nu-
merical analysis of discretized differential or integral operators for boundary value problems
in mathematical physics and various other domains. In the context of matrices arising
from Boundary Integral (BIM) or Boundary Element (BEM) methods, they are often huge
and dense, posing significant challenges in terms of storage and computational efficiency.
Low-rank approximation techniques enable the reduction of these matrices to more man-
ageable forms without sacrificing accuracy and improving efficiency of operations: various
decompositions, matrix-vector product, inversion, etc. This simplification not only enhances
computational performance but also makes it feasible to tackle with enhanced accuracy com-
plex problems in scientific computing, engineering, and data science. Beyond mathematical
physics, low-rank approximations are invaluable in fields such as machine learning, signal
processing, and bioinformatics, where they facilitate efficient data compression, noise reduc-
tion, and the extraction of meaningful patterns from large datasets.

The method of Adaptive Cross Approximation (ACA) introduced in [5, 8, 7] has been
successfully used to approximate admissible blocks of hierarchical matrices or H -matrices [6]
of discretized operators arising from the boundary integral method. Since the matrices
associated with such operators are fully populated, their storage and manipulation are
memory- and computationally intensive. The ACA permits not only to construct a low-rank
approximation of the admissible blocks, but also it allows to control the approximation by
evaluation only a few rows and columns of the original operator. This shortcut is especially
beneficial when the computation of such entries is computationally expensive. The crucial
point in an effective usage of the ACA is the choice of the so-called pivots which correspond
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to the common entry of the evaluated row and the column of the original matrix. In this
article we suggest combining a purely algebraic classical ACA method with a geometrical
choice of the pivots. This choice is based on the distance between the points in the cloud of
points which represent the geometry of the problem. The proposed method is called ACA-
GP (GP stands for Geometrical Pivots). We demonstrate the efficiency of the ACA-GP on
a classical Green operator for elasticity.

The concept of H -matrices was introduced in [20], which is the most general class of
hierarchical matrices with a strong admissibility. In H -matrices, off-diagonal blocks can be
low-rank and full-rank sub-matrices, a class of HODLR (hierarchical off-diagonal low-rank)
matrices, as the name indicates, have only low-rank matrices at the off-diagonal blocks. So
HODLR has a simpler structure. The inverse of a matrix with low-rank blocks can be based
on H -matrix algebra [6, 17] or, as it was done in [3], on the Woodbury matrix identity

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

which in the context of ACA decomposition has C = Ik×k and C−1 = I and UCV = UV >.
HSS (Hierarchical Semiseparable) matrices [10, 27] present a subclass of HODLR matrices
and allow O(n)-complexity solvers, an example can be found in [25]. Another type of matrix
structure is a Block Low-Rank (BLR) matrix format, a flat non-hierarchical block matrix
structure [2]. We can distinguish between a weak and strong admissibility of non-overlapping
domains as was introduced in [1].

Exist numerous techniques to construct low-rank approximations of admissible blocks
K ∈ Rm×n, n < m. They could be subdivided in two main classes: (i) a very general
algebraic skeleton-based or pseudo-skeleton approximations [15], where particular rows and
columns of the original matrix are selected, (ii) by direct decompositions of the matrix
into more adapted for low-rank approximation forms such as SVD, LU and QR, and (iii)
kernel approximations, where the underlying operator of two variables is approximated as a
product of two separate operators acting on one variable. The first class is the most efficient
in terms of computational resources, the second is the most general and accurate, the two
can be applied to any matrix, the third class is more specific and is applicable when the
matrix is defined by a smooth kernel operator. A survey could be found in [18]. The most
popular methods are summarized below:

• Interpolative Decomposition (ID) based on matrix skeletonization [11], com-
plexity O(mn log k + k2n) or as described in [23] as at most O(kmn log(n)) but
typically O(kmn).

• Randomized algorithms [13, 12, 21] with a fast randomized algorithm [23, 26]
with the complexity O(nmlog(k) + nl2) where l is of order k but k < l < n. The
fast version is based on the ID and requires a knowledge of the matrix

• Adaptive Cross Appoximation (ACA) with full pivoting needs to scan the
full matrix and Partial pivoting Adaptive Cross Approximation (ACA) and ACA+,
seek for largest entries in a row or column at every approximation step; they work
well for rather homogeneous matrix structure, but can fail when especial rows and
columns are present in the matrix, complexity O(k(m+ n)).

• Boundary Distance Low-Rank (BDLR) [3], relies on the underlying sparse
matrix graph to choose the desired rows and columns, complexity O(nk) however
it can be used in a special context and requires the original sparse matrix from the
finite element solver.

• CUR decomposition [24] at the boundary between classical decompositions and
pseudo-skeleton approximations, where the selected rows and columns exhivit a
”high statistical leverage”, but it is mainly used in the context of data compression
and is not directly related to matrices obtained from BIM, which is the main focus
of this work.
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• Rank revealing QR algorithm with a pivoted Gram-Schmidt algorithm to obtain
r orthogonal basis vectors, used, for example, in [22], complexity O(mnk)

• Rank revealing LU decomposition, complexity O(mnk)
• Singular Value Decomposition (SVD) [14, e.g.], complexity for a full SVD con-

struction O(mn2 + n3) and for a truncated SVD O(kmn).
• Chebyshev low-rank approximation for smooth kernels is an expansion of the

kernel as a series of Chebyshev polynomials, complexity O(nk).
• Multipole expansion is another type of expansion of smooth kernels as series

of spherical harmonics, it is used in the Fast Multipole Method [19], complexity
O(kn).

In this short paper we develop a new method for a low-rank approximation of matrices
arising from physical interaction between admissible (well separated) domains described by
a smooth kernel operator. It is based on the psedo-skeleton approximation and is largely
inspired by a purely algebraic partial pivot ACA method, but the choice of pivots is based
on the combination of algebraic and geometrical properties of the problem. This paper is
organized as follows. In Section 2 we present the ACA method and its proposed ACA-GP
modification for point-wise interaction. In Section 3 we present the results of the ACA-GP
method applied to a Green operator for a set of separate clouds of points. The performance
of the method is compared with the classical ACA and the most computationally extensive
but the most accurate Singular Value Decomposition (SVD) ensuring the best low-rank
approximation. Finally, in Section 4 we draw some conclusions and propose future research
directions.

2. Methods.

2.1. Low rank approximation of admissible blocks. Let us consider admissible
blocks of a hierarchical matrix [6] of a discretized operator arising from the Boundary
Integral Method (BIM) [9]. By admissible blocks we understand the blocks corresponding
to subdomains X,Y ⊂ Ω which verify the following geometrical criterion [6]:

(2.1) min{diam(X),diam(Y )} ≤ ηdist(X,Y ),

where by diam(•) we understand a certain measure of the set extension which can be pre-
computed with a reasonable (linear) complexity, for example as a the doubled distance from
the center to the farthest element. Since the computation of the minimal distance between
the sets has a high (O(nm)) complexity, a ”relaxed” distance condition shall be used. This
relaxed distance will be denoted with a prime dist′(X,Y ), meaning that this is an upper
bound of the real Euclidean distance. This approximate distance can be also computed with
a reasonable (linear) complexity, for example, as a distance between centers of subdomains
x̄, ȳ of X and Y minus the estimated half-sum of diameters, i.e.

dist(X,Y) ≤ dist′(X,Y ) = ‖x̄− ȳ‖ − (diam(X)− diam(Y ))/2 ≤
≤ ‖x̄− ȳ‖ −min{diam(X),diam(Y )}.

For a set of points, the center can be computed with a linear complexity as a barycenter:

(2.2) x̄ = 1
|X|

∑
i∈X

xi, ȳ = 1
|Y |

∑
j∈Y

yj ,

where |X|, |Y | denote the number of points in the sets X,Y , respectively. Then the admis-
sibility criterion Equation (2.1) reduces to

(2.3) min{diam(X),diam(Y )} ≤ α‖x̄− ȳ‖, α = η

1 + η
.
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Now let us assume that the components aij of the admissible block of the discrete BIM
operator A ∈ Rn×m can be computed as

aij =
∫
Xi

∫
Yj

κ(x, y) dx dy, i = 1, . . . , n, j = 1, . . . ,m

where κ(x, y) is the kernel operator. Since the subdomains are separated, there is no singular
function evaluation. The objective is to evaluate a low-rank approximation A′k of the opera-
tor A such that the rank k of the approximation ensures a controllable error ‖A−A′k‖F and
that k preferably remains much smaller than the size of the original matrix k � min{m,n}.

2.2. Adaptive Cross Approximation (ACA). The ACA method [8] is based on
the general idea of a pseudo-skeleton representation of the matrix A [15]. The approximate
low-rank matrix A′k of rank k is represented as an outer product of submatrices U and V :

(2.4) A′k =
k∑
i=1

uiv
T
i = UV T , U ∈ Rn×k, V ∈ Rm×k

which can be adaptively constructed until a required accuracy is reached:

(2.5) ∀ε > 0,∃k s.t. ‖A−A′k‖F ≤ ε‖A‖F ,

where ε is the required accuracy ε and ‖ • ‖F is the Frobenius norm. Of course, since
the matrix A is never computed fully nor the low-rank matrix A′ is constructed (only its
decomposed representation), all these norms are replaced by adapted expressions and will
be presented in the following section. The data compression ratio is defined as

|U |+ |V |
n×m

= k(n+m)
n×m

m=n−−−→ 2k
n

which clearly demonstrates that this compression makes sense only if k<min{n,m}/2.
The classical ACA method is based on the algorithm shown in Algorithm 2.1. The

only liberty in the algorithm is the choice of the pivot row ik (line 3) from which the pivot
column jk is selected such that it has the maximal entry of the residual column (line 10).The
choice of the pivots is crucial for the convergence of the ACA method and classically the
row indices ik are selected such that the Vandermonde matrix corresponding to the system
in which the approximation error is to be estimated is non-singular, see [6, 4]. In [16] a
slightly different strategy is applied and called ACA+: starting with a random initial row
and subsequent maximal component choice for the column and the maximal entry of this
column for the row. The ACA+ method is claimed to be more robust than the classical
ACA but as demonstrated in [6], in some situations it could be suboptimal.

Let us now demonstrate the ACA type matrix approximation in a more explicit form
assuming that components aij are computed as aij = 1/|xi − yj |. The first rank k = 1 is
constructed as

A′1ij = ai1,jai,j1

ai1,j1

= |xi1 − yj1 |
|xi − yj1 | |yj − xi1 |

, i = 1, . . . , n, j = 1, . . . ,m

where i1, j1 is the first pivot. The associated residual between the original matrix and this
first rank approximation is given by

(2.6) R1
ij = Aij −A′1ij = 1

|xi − yj |
− |xi1 − yj1 |
|xi − yj1 | |yj − xi1 |

.
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We can represent points in the clouds with respect to the first pivot as xi = xi1 + ∆1xi and
yj = yj1 + ∆1yj , where ∆1xi1 = 0 and ∆1yj1 = 0. If we introduce the following notation
for the vector connecting two pivot points d11 = xi1 − yj1 , then the residual becomes

(2.7) R1
ij = |d11 + ∆1xi||d11 −∆1yj | − |d11 + ∆1xi −∆1yj ||d11|

|d11 + ∆1xi −∆1yj ||d11 + ∆1xi||d11 −∆1yj |

It is easy to see that for i = i1 and for j = j1 the numerator is equal to zero, i.e. the residual
column and line corresponding to the pivot are zero. The second rank k = 2 approximation
is constructed as

A′2ij = A′1ij +
R1
i,j2
R1
i2,j

R1
i2,j2

where i2, j2 is the second pivot. The residual between the original matrix and this second
rank approximation is given by

R2
ij = Aij −A′2ij = R1

ij −
R1
i,j2
R1
i2,j

R1
i2,j2

=
R1
i,jR

1
i2,j2
−R1

i,j2
R1
i2,j

R1
i2,j2

.

With this form it is easy to see that for i = {i1, i2} and j = {j1, j2} the residual is zero.
Recursively, the (k + 1) rank approximation is constructed as

Rk+1
ij = Aij −A′k+1ij = Rkij −

Rki,jk+1
Rkik+1,j

Rkik+1,jk+1

=
Rki,jR

k
ik+1,jk+1

−Rki,jk+1
Rkik+1,j

Rkik+1,jk+1

.

Algorithm 2.1 Adaptive Cross Approximation (ACA)
1: Let k ← 1; I, J ← ∅; ε > 0
2: repeat
3: Find pivot row ik by some rule
4: Evaluate column ṽk ← Aik,s
5: for l = 1, . . . , k − 1 do . Subtract previous columns
6: ṽk ← ṽk − (ul)ikvl
7: end for
8: I ← I ∪ {ik}
9: if ṽk does not vanish then

10: jk ← arg maxj∈S |ṽk|j
11: J ← J ∪ {jk}
12: Pivot pk ← ṽkjk

13: Evaluate row ũk ← At,jk

14: for l = 1, . . . , k − 1 do . Subtract previous rows
15: ũk ← ũk − (vl)jk

ul
16: end for
17: Evaluate residual norm ‖Rk‖F and matrix norm ‖A′k‖F
18: Renormalize uk = sign(pk)ũk/

√
pk, vk = ṽk/

√
pk

19: Update matrices U ← [U |uk], V ← [V |vk]
20: k ← k + 1
21: end if
22: until ‖Rk‖F ≤ ε‖A′k‖F or |I| = n or |J | = m
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2.3. Geometrical insights in optimal pivot choice. The exclusively algebraic
search for pivots used in ACA, based on maximizing pivot values, has the merit of be-
ing geometry-agnostic and easy to implement. However, it is suboptimal, as can be easily
demonstrated through a relatively simple test. Take two random separate clouds X and
Y of size |X| = N , |Y | = M and compute all possible choices for the first pivot {i1, j1}
such that {i1, j1} ∈ N ×M = {1, 2, . . . , n} × {1, 2, . . . ,m} for every pivot we can construct
vectors ũ1 = ai,j1 and ṽ1 = ai1,j and approximate the matrix by

A′1(i1, j1) = ũ1ṽ
>
1 /pi1,j1 , pi1,j1 = ai1,j1 .

Then we can select the optimal pivot {i∗1, j∗1} as

{i∗1, j∗1} = arg min
{i1,j1}∈N×M

(‖A′1(i1, j1)−A‖F ) ,

by definition
‖A′1(i∗1, j∗1 )−A‖F ≤ ‖A′1(i1, j1)−A‖F ,∀i1 ∈ N, j1 ∈M.

In the ACA i1 is selected randomly and j1 = arg maxj∈M |Ai1,j |. We can visualize the error
in the approximation for the two clouds for a fixed row or a column, i.e. ∀i, {i, j1} for cloud
X and ∀j, {i1, j} for cloud Y . It makes sense to show the error for i1 = i∗1 and j1 = j∗1 . Now
we proceed to the error estimation of the next rank k by assuming that on the previous
rank we selected the optimal pivot {i∗k−1, j

∗
k−1}. The scaled rows and columns are stored in

matrices U = {u1, u2, . . . , uk} and V = {v1, v2, . . . , vk}, with

ul = sign(p(il, jl))ũl/
√
|p(il, jl)|,(2.8)

vl = ṽl/
√
|p(il, jl)|(2.9)

so that A′k = UV >, where ũl, ṽl are the row and the column vectors of the residual matrix
Rk−1 and p(il, jl) is the pivot value:

ũl = Rl−1
i,jl

= ai,jl
− a′l−1

i,jl−1
,(2.10)

ṽl = Rl−1
il,j

= ail,j − a
′l−1
il−1,j

,(2.11)
p(il, jl) = ũl(il) = ṽl(jl).(2.12)

The relative error for the pivot choice {il, jl} can be computed as

Ek(ik, jk) = ‖A
′
k(ik, jk)−A‖F
‖A‖F

.

Again, we can find the optimal choice for the pivot

{i∗k, j∗k} = arg min
{ik,jk}∈{N\I}×{M\J}

Ek(ik, jk),

where I = {i1, i2, . . . , ik−1}, J = {j1, j2, . . . , jk−1} contains rows and columns of previously
selected pivots, thus N \ I and M \ J are sets of the remaining rows and columns. Again
we can visualize the error in two clouds for a fixed row or a column, i.e. ∀i, {i, j∗k} for cloud
X and ∀j, {i∗k, j} for cloud Y . Let’s call this search strategy genetic as for every rank we
select the best possible approximation, which is of course, unimaginable in practice as this
requires construction of n×m full matrices n×m times to find the most optimal one, so, the
complexity would be O(kn2m2) which is too prohibitive in practice. But here our objective
is first to demonstrate the sub-optimality of the classical ACA pivot selection, and second
to reveal the geometrical structure of the optimal pivot location. By pivot location we mean
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Fig. 1: Illustration of the optimal choice of the first pivot {i∗1, j∗1} for the rank k = 1 for two
clouds of points (xi∗1 , yj∗1 are marked with stars). The optimal pivot points are located near
the centers of the clouds. Left column: relative error above the SVD approximation: Ẽ1 =
(E1 −ESVD

1 )/ESVD
1 . Central column: interaction matrix’s column ai1,j colored according to

their value. Right column: the location of the optimal column i1 in the cloud X. Black
crosses correspond to the barycenters of the clouds.

the geometrical coordinates of the optimal row ik (point xik ) and column jk (point yjk
) in

the clouds X and Y , respectively.
To analyse the geometrical signature of the optimal pivot choice we analyse two clouds

of points X and Y located at some distance and oriented in a random fashion. Random and
structural point distributions within the clouds are studied based on the full genetic data
generated. To make the error estimation more meaningful, we subtract the relative error of
the SVD approximation for the corresponding rank k and normalize by the relative SVD
error:

(2.13) Ẽk = Ek − ESVD
k

ESVD
k

= ‖A′k −A‖F
‖A′SVD

k −A‖F
− 1 ≥ 0,

since, by definition the SVD is the optimal low-rank approximation, we can be sure that
the error remains positive.

Based on the data analysis of the genetic ACA, the first observation we make is that
the optimal choice of the first pivot is located near centers of the clouds X and Y , which is
quite obvious. It can be readily seen in Figure 1 that the points near the center possess the
minimal error.

The second observation is that starting from rank k = 2, minimal absolute values of
the residual matrix’s column corresponds to the maximal approximation errors. By residual
matrix, as previously, we understand Rk−1 = A − A′k−1 = aij −

∑k−1
i=1 uiv

>
i . So for every

i∗k we can evaluate all values Rk−1(i∗k, j); in the classical ACA we select the maximal value
j∗k = argj max |Rk−1(i∗k, j)|, but as can be seen for k = 1 in Figure 1 (for which R0 = A),
and for higher ranks as illustrated in Figure 2, this choice is not optimal. Nevertheless,
what is clear is that the minimal absolute values of the residual column correspond to the
maximal errors of the approximation Ẽk and thus the ACA by choosing the higher values
of the residual safely avoids too bad approximation.

The third observation is that the optimal points concentrate in the center of the cloud.
It could be readily seen in Figure 2: black circles correspond to the optimal pivots selected
using genetic ACA. It contrasts with the classical ACA choice in which the maximal values
of the residual correspond to points on the boundary of the cloud as can be easily seen in
the central column of Figure 2.
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Fig. 2: Illustration of the error structure for ranks k = {2, 3, 4, 5} starting from the top and
a randomly selected {i2, i3, i4, i5} (note that all pivots i∗l , j∗l with l < k were assumed to
be selected in an optimal way and are shown with black circles) in cloud X shown with a
cross on the right column; the left column represents the relative difference in genetic ACA’s
error (relative error of the Frobenius norm of the matrix approximation) with respect to
SVD Ẽk = (Eg −ESVD)/ESVD; the central column shows the absolute value of the residual
column corresponding to selected ik; the clouds have n = m = 400 points.
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The fourth observation is that the zones of extreme errors (minimal or maximal) lie
on some curved lines which seem to pass through optimal pivots of the previous ranks.
These curves, let’s call them extreme curves, could be approximated by some function Ek :
f(x) = 0 such that error minimizing and maximizing pivots lie on these extreme curves:
f(xi) ≈ 0 ≈ f(yj). The sign ≈ reflects the discrete nature of points and the continuous
nature of the curves. We can distinguish extreme curves of maximal E max

k and minimal E min
k

errors. This observation is valid for k > 1. Regardless a seeming simplicity of these extreme
curves and relatively simple origin algebraic equation for their construction, they cannot be
easily determined for arbitrary domains. Therefore, the construction of the algorithm will
combine such curves for ranks k = 2 and k = 3 with the third observation about the optimal
points concentration in the center of the cloud. Nevertheless, we will make an attempt to
reveal the geometrical structure of these extreme curves for simple domains and formalize
the algorithm for the optimal pivot selection in the following sections.

2.4. Geometrical structure of the error distribution. To take profit of the ob-
servation that the optimal points concentrate in the center of the cloud, we introduce two
central subsets Ic, Jc of the clouds such that

Ic =
{
i ∈ {1, . . . , n}

∣∣∣∣ |xi − xi1 | ≤ εrdiam(X)
}

(2.14)

Jc =
{
j ∈ {1, . . . ,m}

∣∣∣∣ |yj − yj1 | ≤ εrdiam(Y )
}
,(2.15)

which contain indices of points close to the points forming the first pivot xi1 , yj1 . The
parameter εr is a relative distance to the diameter of the cloud. The only condition on
the selection of the central subsets is that they must contain sufficient number of points
for the relevant range of ranks, for example, if the maximal rank is bounded by max(rank)
then the number of points in the central subset must contain at least this number with a
relatively small offset of the order of ∆ ≈ 5− 10: |Ic| ≥ max(rank) + ∆. The algorithm for
the central subset selection is presented in Algorithm 2.2. If the required number of points
is not verified, the central ratio fraction is increased, for example, by 10 %.

The sensitivity of the approximation to this central fraction – the only parameter of
the algorithm – will be evaluated in Section 3. The central subsets Ic, Jc will be used to
construct ad hoc rules for the selection of optimal points. As will be shown, a selection
algorithm based on extreme curves can be constructed for more or less square domains for
the ranks k = 2 and k = 3, for which the geometrical structure of error is rather trivial. For
higher ranks k ≥ 4 or arbitrary domains a simpler procedure combining central subsets and
algebraic considerations is adopted, which will be presented in Subsection 2.4.3.

2.4.1. Rank k = 2. Let us start the study from the second low-rank approximation
k = 2, we assume that we selected the optimal pivot {i∗1, j∗1} for the first rank. The
objective is to select such point xi∗2 in cloud X and such point yj∗2 in cloud Y so that the
newly approximated matrix A′2 = (u1, u2)(v1, v2)> minimizes the Frobenius norm {i∗2, j∗2} =
arg mini,j ‖A−A′2‖F . If a point in cloud X is selected in random fashion i2, then there exist
such j′2 which minimizes the aforementioned norm for given i2. At the same time, for every
choice of i2, one can visualize the error Ẽ2(i2, j), see Equation (2.13), for all points of the
cloud Y as it was done before.

On the top of the clouds colored according to relative error Ẽk, we make a simple geo-
metrical construction: a circle C2(i2) passing through points xi∗1 , yj∗1 and the new (tentative)
point xi2 . According to our experiments, for any choice of i2, the optimal y(j′2) lies on the
same circle with an eventual spatial shift related to the spatial distribution of points. There-
fore, the extreme curve for i2: E min

2 (i2) can be approximated by C2(i2). Let us construct
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Algorithm 2.2 Central subset selection
1: Let first pivot {i1} be selected
2: Let Ic ← ∅; εr > 0
3: while |Ic| < max(rank) + ∆ do
4: for i = 1, . . . , n do
5: if |xi − xi1 | ≤ εrdiam(X) then
6: Ic ← Ic ∪ {i}
7: end if
8: end for
9: if |Ic| < max(rank) + ∆ then

10: εr ← 1.1εr
11: end if
12: end while

a conjugate circle passing through the point yj∗1 : C⊥2 (yj∗1 ) (or for shorter notation C⊥2 (j∗1 ))
in such a way that it has the same radius as C2, it intersects the point yj∗1 orthogonally to
the circle C2, and the center c⊥2 verifies (c⊥2 − yj∗1 ) · (xi∗1 − yj∗1 ) ≥ 0. Constructed in such a
way, this conjugate circle represents the extreme curve of maximal errors E max

2 (i2) = C⊥2 .
Interestingly, regularly structured clouds of points possess the same geometrical structure
of the error as randomly distributed clouds with a relatively high and uniform density. In
Figures 3 and 4 we show the error distribution for randomly selected i2 along with the intro-
duced geometrical constructions: the circle C2(i2) and the conjugate circle C⊥2 (yj∗1 ). Only
two configurations are shown, more examples are provided in Supplementary material [29].

Now, we need to develop a set of ad hoc rules which would help us to select more
or less optimal points. In order to keep these rules simple to implement, we propose an
algorithm shown in Algorithm 2.3. It aims to iteratively select an optimal pair of points
from two clouds to keep small the approximation error for a rank-2 matrix. The process
starts by randomly selecting a point from one of the clouds xi2 ∈ X within the central
subset i2 ∈ Ic \ {i1}, after which a corresponding point in the central subset Jc \ {j1} of the
cloud Y is chosen such that it lies close to the extreme circle and maximizes the residual
component |R1

j,i2
|. The algorithm refines the selection by iteratively searching for the best

candidate, balancing proximity and error minimization, until the optimal point is found.
As can be seen, this algorithm combines geometric and algebraic considerations and has a
linear complexity. Moreover, contrary to the classical ACA it requires evaluation of only
a small fraction of R1

ij components and thus could be even more advantageous than the
classical ACA, especially for situations where the evaluation of the kernel is expensive. The
complexity of the algorithm remains O(|Y |), but the number of operations is of the order
β|Jc| ≈ βbεr|Y | − 1c with the factor β ∼ 2–4.

2.4.2. Rank k = 3. Third rank approximation is more trivial than the second one
because the underlying geometry of errors remains stable with respect to the choice of the
xi3 point under the condition that the latter is not located too close to C2(i∗2) which becomes
now the extreme curve of maximal errors E max

3 . On the other hand, the conjugate extreme
surface C⊥2 (j∗1 ) becomes the minimal error curve E min

3 , i.e. the extreme curves exchange
their roles:

E max
3 = E min

2 = C2(i∗2), E min
3 = E max

2 = C⊥2 (j∗1 ).

The error structure shown in Figure 5 remains practically independent of the choice of
i3 if it is selected far from the E max

3 extreme curve (see supplementary material for more
examples, [29]). On the contrary, the selection of xi3 close to C2(i∗2) as shown in Figure 6
leads to a significant increase in the error (see the minimal value in the figure) and can
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Algorithm 2.3 Selection of optimal points for rank k = 2
Require: Central subsets Ic, Jc (excluding the first pivot)

1: Select a point xi2 randomly such that i2 ∈ Ic.
2: Initialize l← 1.
3: Copy the central subset Jcl ← Jc.
4: repeat
5: Select a point yjl

2
such that jl2 ∈ Jcl and minimizes the distance to the circle C2(xi2):

jl2 ← arg min
j2∈Jc

l

dist(yj2 ,C2(xi2))

6: Evaluate |R1
i2,jl

2
| = |ai2,jl

2
− a′1(i2,jl

2)|.
7: if l > 1 and |R1

i2,jl
2
| ≤ |R1

i2,j
l−1
2
| then

8: Stop iterations and select j2 = jl−1
2 .

9: else
10: l← l + 1
11: Update the copy of the central subset Jcl ← Jcl \ {jl2}
12: end if
13: until convergence

alter the geometry of the error distribution. Therefore, we assume that if one selects xi3 far
from C2(i∗2), i.e. close to the circle passing through xi∗1 and orthogonal to the circle C2(i∗2):
C⊥2 (i∗1) (our assumption), and then one selects yj3 close to C⊥2 (j∗1 ), then the error will be
minimal.

The Algorithm 2.4 for selecting the points i3 and j3 is rather similar to the one used for
i2, j2. The main difference is that the i3 point is selected in the central subset close to the
C⊥2 (xi∗1 ) and j3 is selected in an iterative way close to C⊥2 (yj∗1 ). The algorithm is as follows:

• Select i3 ∈ Ic \ {i1, i2} such that

i3 = arg min
i∈Ic\{i1,i2}

dist(xi,C⊥2 (xi∗1 )).

• Select trial j1
3 ∈ Jc \ {j1, j2} such that

j1
3 = arg min

j∈Jc\{j1,j2}
dist(yj ,C⊥2 (yj∗1 )).

• Evaluate |R2
i3,j1

3
| = |ai3,j1

3
− a′2

i3,j1
3
|.

• Iterate to find j3 such that

jl+1
3 = arg min

j∈Jc\{j1,j2,j1
3 ,...,j

l
3}

dist(yj ,C⊥2 (j∗1 ))

before |R2
i3,j

l+1
3
| ≤ |R2

i3,jl
3
| and select j3 = jl3 as the optimal point.

The complexity of the algorithm is O(|X| + |Y |), but the number of operations is of the
order |Ic|+β|Jc| ≈ bεr|X|− 2c+βbεr|Y |− 2c with the factor β ∼ 2–4. Note that, contrary
to the second rank selection, this algorithm for the selection of the 3rd rank pivot is not
restricted to square-shaped domains and, in principle, can be applied to arbitrary domains.

2.4.3. Higher ranks k ≥ 4. For higher ranks establishing a simple deterministic pro-
cedure relying on extreme curves seems too tedious: trivial curves do not ensure extreme
values of error even though visually it can be noticed that they also form curves with more
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Fig. 3: Illustration of the error structure for the rank k = 2 for two clouds of structured
(upper panel) and random (lower panel) points within square boxes. A randomly selected
point xi2 in X cloud is marked with a green cross and the corresponding optimal yj′2 is shown
with a star, the corresponding circle C2(i2) is shown with a red dashed line, the conjugate
circle C⊥2 is shown with a green dotted line; black circles highlight the first optimal pivot
x(i∗1) and y(j∗1 ).

or less constant curvature. Therefore, an even simpler approach combining geometrical con-
sideration and algebraic analysis could be used. The algorithm is presented in Algorithm 2.5
and consists in a two step evaluation of the maximal residual component over the central
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Fig. 4: Illustration of the error structure for the rank k = 2 for two clouds of structured
(upper panel) and random (lower panel) points within square boxes. A randomly selected
point xi2 in X cloud is marked with a green cross and the corresponding optimal yj′2 is shown
with a star, the corresponding circle C2(i2) is shown with a red dashed line, the conjugate
circle C⊥2 is shown with a green dotted line; black circles highlight the first optimal pivot
x(i∗1) and y(j∗1 ).

subsets. As previously, we introduce adjusted central subsets by excluding previosly selected
points:

Ick = Ic \ {i1, . . . , ik−1}, Jck = Jc \ {j1, . . . , jk−1}.
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Algorithm 2.4 Rank k = 3 Selection Algorithm
Require: Central subsets Ic, Jc (excluding previously selected points)

1: Select a point i3 such that

i3 ← arg min
i∈Ic

dist(xi,C⊥2 (xi∗1 ))

2: Initialize l← 1
3: Copy the central subset Jcl ← Jc

4: repeat
5: Select a point jl3 such that

jl3 ← arg min
j∈Jc

l

dist(yj ,C⊥2 (yj∗1 ))

6: Evaluate |R2
i3,jl

3
| = |ai3,jl

3
− a′2(i3,jl

3)|.
7: if l > 1 and |R2

i3,jl
3
| ≤ |R2

i3,j
l−1
3
| then

8: Stop iterations and select j3 = jl−1
3

9: else
10: l← l + 1
11: Update the copy of the central subset Jcl ← Jcl \ {jl3}
12: end if
13: until convergence

Then for a randomly selected trial it ∈ Ick we evaluate the components of the residual matrix
corresponding to the columns j ∈ Jck:

Rk−1
itj = aitj −

k−1∑
l=1

ul(it)vl(j).

Among all evaluated components we select the column jk with the maximal absolute value
of the residual component:

jk = arg max
j∈Jc

k

|Rk−1
itj |.

Then we evaluate the components of the central rows i ∈ Ick:

Rk−1
ijk

= aijk
−
k−1∑
l=1

ul(i)vl(jk).

and select the row ik with the maximal absolute value of the residual component:

ik = arg max
i∈Ic

k

|Rk−1
ijk
|.

In such a way, the new pivot ik, jk is selected. This algorithm will be used for all ranks
k ≥ 4.

2.5. A New Method: ACA-GP. The previous sections suggest a methodology for
an informed choice of pivots which aim at minimizing the approximation errors. In this
chapter the full algorithm for a new adaptive low-rank approximation is presented and dis-
cussed. In essence, we suggest combining the purely algebraic ACA method with geometrical
considerations for the choice of the pivots. This choice is based on combined knowledge of
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Fig. 5: Error structure for a random choice of i3 for a structured (upper panel) and random
(lower panel) clouds.

spatial distribution of points within the cloud and on the algebraic properties of the residual
vectors. The proposed method is named ACA-GP (GP for Geometrical Pivots).

A detailed algorithm is presented in Algorithm 2.6 with associated complexity evalua-
tions for every step. We assumed that m ≤ n. The following notations were used: two sets
of integers M = {1, 2, . . . ,m}, N = {1, 2, . . . , n} indicate IDs of points (elements) in two
separate clouds, whereas sets Ik = {i1, i2, . . . , ik}, Jk = {j1, j2, . . . , jk} correspond to pivots
(rows and columns) used for skeleton construction of a rank-k approximation, so N \ Ik,
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Fig. 6: An example, of the error structure for a bad choice of xi3 , i.e. near the extreme
circle C2(i∗2) resulting in a significant increase in the error: upper panel for structured and
lower panel for random clouds.

M \ Jk correspond to the sets of the remaining columns and rows, respectively. The sets
Ic, Jc are the central subsets which are defined by Equation (2.15). The core of the method
remains unchanged with respect to the ACA methodology, it is briefly described below to
help the interpretation of the algorithm. The matrix A′k mentioned in Algorithm 2.6 cor-
responds to the matrix approximation at the k-th step/rank and is defined as A′k = UkV

T
k

with Uk = {u1, u2, . . . , uk} and Vk = {v1, v2, . . . , vk}, but of course A′k is never evaluated,
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Algorithm 2.5 Pivot Choice for Higher Ranks k ≥ 4
Require: Central subsets Ic, Jc (excluding previously selected points)

1: Select a trial point it randomly such that it ∈ Ick
2: Compute Rk−1

itj for all j ∈ Jc:

Rk−1
itj = aitj −

k−1∑
l=1

ul(it)vl(j)

3: Select the column jk such that

jk ← arg max
j∈Jc

|Rk−1
itj |

4: Compute Rk−1
ijk

for all i ∈ Ic:

Rk−1
ijk

= aijk
−
k−1∑
l=1

ul(i)vl(jk)

5: Select the row ik with the maximal absolute value:

ik ← arg max
i∈Ic

k

|Rk−1
ijk
|

only matrices Uk, Vk are fully computed and only the necessary operations are performed
to construct the next approximation A′k+1. The rows and columns ui, vi for i = 1, . . . , k of
the matrices Uk, Vk are constructed from scaled rows and columns of the residual matrices
Ri−1 with R0 = A in the following way. For the first rank k = 1 the rows and columns are
constructed as

u1
i = sign(p1)Ai,j1/

√
p1, v1

j = Ai1,j/
√
p1,

where p1 = Ai1,j1 is the first pivot (see Algorithm 2.6). The division by pivot is split into
two divisions for u and v vectors to avoid division by a too small number. For higher ranks
k > 1, the rows and columns are constructed as

uki = sign(pk)ũki /
√
pk, vkj = ṽkj /

√
pk,

where

ũki = Rk−1
ijk

= ai,jk
−
k−1∑
l=1

vljk
uli, ṽkj = Rk−1

ik,j
= aik,j −

k−1∑
l=1

ulikv
l
j ,

where pk = ũkik = ṽkjk
is the k-th pivot.

To evaluate the Frobenius norm of the approximate matrix at the k-th step/rank (lines
35), we use the recursive formula from [8]:

(2.16) ‖A′k‖F =

√√√√‖A′k−1‖2F + 2
k−1∑
j=1

u>k ujv
>
j vk +R2

k, where R2
k = ‖uk‖2F ‖vk‖2F

The key steps of the entire procedure is the selection of to-be-evaluated rows and columns
of the original matrix A, which is done according to algorithms presented in the previous
section, namely Algorithms 2.3 to 2.5. The selection of the first pivot is made such that the
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Algorithm 2.6 Adaptive Cross Approximation with Geometrical Pivots (ACA-GP) for
m ≤ n
Require: Two clouds X = {xi}ni=1, Y = {yj}mj=1, Kernel κ(x, y), global tolerance ε > 0

OR maximal rank kmax
pivot tolerance εp > 0, central fraction εr > 0
// First pivot

1: Find the center of X: x̄← 1/n
∑
i∈N xi . O(n)

2: Find the center of Y : ȳ ← 1/m
∑
j∈M yj . O(m)

3: Find the first pivot’s row: i1 ← arg min
i∈N

(xi−x̄)·(ȳ−x̄)>0

‖xi − x̄‖ . O(n)

4: Find the first pivot’s column: j1 ← arg min
j∈M

(yj−ȳ)·(x̄−ȳ)>0

‖yj − ȳ‖ . O(m)

5: I ← {i1}, J ← {j1}.
6: Pivot p1 = κ(xi1 , yj1)
7: u1 ← {sign(p1)κ(xi, yj1)/√p1}, i ∈ N , . O(m)
8: v1 ← {κ(xi1 , yj)/

√
p1}, i ∈M , . O(n)

9: U ← u1, V ← v1

10: Compute residuals: ‖R‖F = ‖U‖F ‖V ‖F , ‖A′‖F = ‖R‖F . O(n+m)
11: Construct central subsets Ic, Jc according to Algorithm 2.2.

// Main loop
12: r ← 2
13: repeat
14: if r = 2 then
15: Use Algorithm 2.3 or Algorithm 2.5 to select i2, j2 . O(m) or O(n+m)
16: else if r = 3 then
17: Use Algorithm 2.4 to select i3, j3 . O(m)
18: else
19: Use Algorithm 2.5 to select ir, jr . O(n+m)
20: end if
21: Update central subsets Ic ← Ic \ {ir}, Jc ← Jc \ {jr}
22: Update pivot sets I ← I ∪ {ir}, J ← J ∪ {jr}
23: Pivot pr = κ(xir , yjr

)−
∑r−1
l=1 ul(ir)vl(jr)

24: if |pr| < εp then return U, V, k ← r − 1
25: end if
26: Evaluate column ũr := κ(xi, yjr ), i ∈ N . O(n)
27: Evaluate row ṽr := κ(xir , yj), j ∈M . O(m)
28: for l = 1, . . . , r − 1 do . Substract A′r−1 columns and rows, O(rn)
29: ũr := ũr − (vl)jr

ul
30: ṽr := ṽr − (ul)irvl
31: end for
32: Compute skeleton row and column: ur ← sign(pr)ũr/

√
pr, vr ← ṽr/

√
pr

33: Update outer-product matrices: U ← [U |ur], V ← [V |vr]
34: Residual norm ‖Rr‖F = ‖ur‖F ‖vr‖F . O(n+m)
35: Compute the norm of the approx. matrix ‖A′r‖F Equation (2.16) . O(r(n+m))
36: r ← r + 1
37: until ‖Rr‖F ≤ ε‖A′r‖F or J ≡M or r = kmax

pivot is the closest point to the barycenter of the cloud and lies in the half-plane passing
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through the barycenter on the side containing the homologue cloud, see Algorithm 2.6:

i1 = arg min
i∈N,(xi−x̄)·(ȳ−x̄)≥0

‖xi − x̄‖(2.17)

j1 = arg min
j∈M,(yj−ȳ)·(x̄−ȳ)≥0

‖yj − ȳ‖,(2.18)

where x̄, ȳ are the barycenters of clouds X,Y , respectively.

b 1
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Fig. 7: Set-up of the experiment: two clouds of points X and Y are generated, each in a
rectangle a× b (ξ = a/b).

3. Results: ACA-GP for Two Interacting Clouds. We demonstrate the per-
formance of the algorithm on the problem of two interacting separate clouds of points
X = {xi} ⊂ Rn×d, Y = {yj} ⊂ Rm×d where d = 2 is the space dimension. For the sake of
simplicity, points in every cloud X,Y are generated within a rectangle a×b such that a ≤ b,
and ξ = a/b is the aspect ratio of the rectangle, ξ ∈ (0, 1] (see Fig. 7). Therefore, the size
of every cloud can be approximated by diam(Y ) ≈

√
a2 + b2 = b

√
1 + ξ2. For simplicity,

we set b = 1, so the distances are measured in units of b. We consider a Poisson point
process (uniform distribution) for both clouds X,Y to generate the points. The cloud Y is
centred at zero and the rectangle is aligned with the axes, whereas the cloud X is displaced
and rotated by a random angle θ (uniform distribution in [−π, π]) in such a way that the
criterion of admissibility Equation (2.1) is satisfied. The approximate distance between the
clouds is estimated as

(3.1) dist′(X,Y ) = ‖x̄− ȳ‖ −min{diam(X),diam(Y )} = ‖x̄− ȳ‖ − b
√

1 + ξ2,

whereas the true distance can be computed as

(3.2) dist(X,Y ) = min
i∈N,j∈M

‖xi − yj‖.

The kernel is given by a smooth kernel κ(x, y) = 1/‖x− y‖ and we assume that the matrix
entries are simply

aij = κ(xi, yj)

as it was considered in [16].
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The tests are carried out for two aspect ratio ξ = {0.5, 1} and for true distances dist =
{1.5, 2.5, 5.0}, the number of points in the clouds is n,m = 400. We used Ns = 1000
realization of randomly oriented clouds with randomly distributed points. The first objective
is to study the effect of the central subset fraction εr introduced in Subsection 2.4. The
rule of thumb for its selection can be easily constructed. If we suppose that the domain is a
circle of diameter diam(Y ), so to have the number of points in the central subset of radius
εrdiam(Y ) equal to max(rank), we need to verify the condition:

εr &

√
max(rank)
|Y |

,

which is a double of the non-conservative estimation for the needed value. The double is
used to account for arbitrary shape of the domain and the fact that the number of points in
the central subset should be bigger than the maximal rank of the approximation to ensure
optimal performance. So, one has to carefully choose the maximal allowed rank in the
algorithm to avoid a too large central subset fraction and excessive computational cost. In
the current case for max(rank) = 10, we get εr & 0.15.

The effect of the central subset fraction εr is not trivial and affects differently different
ranks of the approximation. The relative size of the central subset is varied in the interval
εr ∈ [0.1, 0.5]. The lower value was chosen such to ensure that a sufficient number of points
is available in each central subset even though in Poisson’s process it is always possible to
have zero points within a central subset. In Figure 8 we show for ξ = 1 and dist = 1.5
how the accuracy of the approximation varies with the central subset size for the first 10
ranks. The very first rank is, of course, independent on the central ratio, the second rank
is also neutral to the variation of the parameter εr. Starting from rank k = 3 and up to
k = 7, the increase of εr decreases the gain factor, but for ranks k = 8, 9 the gain factor is
higher for larger εr. However, a simple strategy consisting in increasing the central subset
individually for those ranks does not work because the overall approximation depends on
the whole history of pivot selections. Therefore, a selected central subset fraction should be
kept for all ranks to ensure a controllable effect. The value of εr = 0.25 presents a reasonable
tradeoff between the gain factor for all considered ranks. However, if one is interested in
the lower ranks only (up to k = 6), one can choose the smallest εr = 0.1 to ensure the best
accuracy and less computational cost.

The main results are presented in Figures 9 and 10 for different aspect ratios ξ, true
distances dist and central subset sizes εr. We plot the relative Frobenius norm of the residual
matrix ‖A − A′‖F /‖A‖F for the three methods: ACA, ACA-GP and SVD; the log-mean
values and log-standard deviations are identified as:

Elog = log10
‖A−A′k‖F
‖A‖F

, Ēlog = 1
Ns

Ns∑
s=1

E
(s)
log(3.3)

σlog =

√√√√ 1
Ns

Ns∑
s=1

(E(s)
log − Ēlog)2, E = 10Ēlog±σlog .(3.4)

The accuracy gain factor of the ACA-GP to the ACA compared to the SVD approximation
is also plotted:

(3.5) gain = ‖A−A′ACA‖F − ‖A−ASVD‖F
‖A−A′ACA-GP‖F − ‖A−ASVD‖F

.

For aspect ratio ξ = 1, the results are computed over 1000 realizations, for ξ = 0.5 the results
are computed over 500 realizations. Many more results can be found in the supplementary
material [29]. The key observations are the following:
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Fig. 8: The effect of the relative central subset fraction εr on the accuracy of the low-rank
approximation: the gain factor ẼACA-GP

k /ẼACA
k for all ranks are plotted.

• The ACA-GP method strongly outperforms the classical ACA method for most of
the considered ranks.

• The average error of the ACA-GP method and its standard deviation are signifi-
cantly lower than those of the ACA method.

• For square-shaped domains and small εr, the first 3 ranks, the ACA-GP method
matches very closely in its performance with the SVD approximation if the extreme
curves are used through Algorithms 2.3 and 2.4.

• For higher ranks k ≥ 4 and arbitrary domains (here, rectangular) and properly
selected εr, the ACA-GP’s error represents the geometrical mean of the ACA and
SVD errors.

• The ACA-GP is the most efficient up to rank k = 3 and for rank k = 6, for
intermediate ranks k = {4, 5}, the error decay rate remains small.

• The domain aspect ratio ξ does not affect the performance of the ACA-GP method
if the central subset-based selection is used Algorithm 2.5, eventually in combination
with Algorithm 2.4.

4. Conclusions. In the context of matrix construction for Boundary Integral or similar
methods, the low-rank approximation of the interaction matrix is a key ingredient for the
effective use of hierarchical matrices. Within this approach, the interaction between well
separated or admissible domains can be efficiently approximated by low-rank matrices. In
this work, we proposed a new adaptive low-rank approximation method, called ACA-GP,
which combines the algebraic ACA method with a geometry-aided choice of pivots. This new
method, similarly to the ACA method, does not require the full original matrix to construct
its low-rank approximation and relies on the algorithms with much lower complexity than
the SVD. The new method demonstrates a much higher accuracy and has a smaller error
dispersion than the classical ACA method.
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Fig. 9: (a-b) relative error in matrix approximation by ACA, ACA-GP and SVD methods
for square domains (ξ = 1): log-mean values and log-standard deviations are computed over
1000 realizations; (c-d) corresponding log-mean gain and log-standard deviation between the
ACA-GP compared to the ACA method with the offset of SVD accuracy (Equation (3.5))
is also shown; (a,c) corresponds to εr = 0.1 and (b,d) to εr = 0.3. The true distance is
dist(X,Y ) = 1.5.
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Fig. 10: Relative error in matrix approximation by ACA, ACA-GP and SVD methods for
square domains ξ = 1 (computed over 1000 realizations) for dist = 2.5 in (a) and dist = 5.0
in (b) for ε = 0.3; relative errors for rectangular domains ξ = 0.5 (computed over 500
realizations) are shown in (c-d) for dist = 1.5 and dist = 5.0 with ε = 0.4.
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The pivot selection procedure is the following. For the first pivot, the central points/elements
from the interacting domains are selected. The choice of the pivots for ranks 2 and 3 is
based on specific geometrical error structure revealed here, however, it can be well con-
structed for square-shaped domains only. Nevertheless, this structure is rather independent
on the distribution of the points within the interacting domains.For higher ranks, adopting
a simple geometric procedure, which constraints the choice of pivots to the central part
of the domain, allows to improve the accuracy of the approximation and even reduce the
computational cost compared to the classical ACA method. The method was tested on two
randomly oriented interacting clouds of points of different aspect ratios. The performance
of the ACA-GP method matches closely the SVD performance for the first three ranks (es-
pecially for square-shaped domains) and ensures approximation error equal in average to
the geometric mean of the ACA and SVD for higher ranks.

In terms of the implementation, the ACA-GP method is slightly more complex and
contains one user-defined parameter: the central subset fraction εr, which controls the
size of the subdomain from which geometrical points corresponding to rows and columns
should be selected. The optimal value of this parameter depends on the required rank of
the approximation, which in its turn cannot be known in advance because of the key idea
of the ACA – the adaptivity – the approximate matrix construction is stopped when the
approximate error reaches a certain threshold. Nevertheless, keeping the central fraction
as small as possible is beneficial for its performance for lower ranks, which should be often
enough in practice. In the worst case scenario, the central subset can be increased when it
runs out of available points. Another possible drawback of the focus on the central subset is
that in real life, the domains can have a ring-like structure, which therefore does not contain
the central subset and could be tricky to handle. In such situation, it would be relevant to
switch to the classical ACA method.

In perspective, we plan to adapt the ACA-GP for the collocation BIM method, where
the area associated with each domain should be taken into account. We also plan to study
in detail the geometrical structure of extreme curves and make an attempt to suggest a
simple algorithm for its identification for arbitrary domains.

Our Python implementation of the ACA and ACA-GP is shared on GitHub [28] as well
as the data and the scripts used for the experiments [29].
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