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A B S T R A C T

Plastic flow is conventionally treated as continuous in finite element (FE) codes, whether in isotropic,
anisotropic plasticity, or crystal plasticity. This approach, derived from continuum mechanics, contradicts
the intermittent nature of plasticity at the elementary scale. Understanding crystal plasticity at micro-scale
opens the door to new engineering applications, such as microscale machining. In this work, a new approach
is proposed to account for the intermittence of plastic deformation while remaining within the framework of
continuum mechanics. We introduce a material parameter, the plastic deformation threshold, denoted as Δ𝑝𝑚𝑖𝑛,
corresponding to the plastic deformation carried by the minimal plastic deformation burst within the material.
The incremental model is based on the traditional predictor–corrector algorithm to calculate the elastoplastic
behavior of a material subjected to any external loading. The model is presented within the framework of
small deformations for von Mises plasticity. To highlight the main features of the approach, the plastic strain
increment is calculated using normality rule and consistency conditions, and is accepted only if it exceeds
Δ𝑝𝑚𝑖𝑛. To achieve this, a time-discontinuous generalization of the Karush-Kuhn–Tucker (KKT) conditions is
proposed. The simulations show that the introduction of the plastic threshold allows for the reproduction of
the spatiotemporal intermittence of plastic flow, capturing the self-organization of plastic flow in complex
loading scenarios within an FE model.
1. Introduction

Plastic flow is usually modeled as a continuous spatio-temporal
deformation mechanism in engineering finite element (FE) codes, be
it in the context of isotropic, anisotropic, or crystal plasticity. This
assumption underlying continuum plasticity models contradicts the in-
termittent nature of plasticity at elementary scales (Brown, 2012). This
intermittency has been experimentally observed in various ways. For
instance, during the compression of micropillars, the stress–strain curve
exhibits significant serrations, which is related to the abrupt activation
of a small number of slip planes (Zhang et al., 2017; Uchic et al.,
2009). Similar results are observed during the tension of submicrometer
single crystals (Oh et al., 2009; Kiener et al., 2008; Borasi et al., 2023).
Acoustic emission and high-resolution extensometry experiments on
centimeter-sized single-crystal samples also reveal the organized, non-
chaotic nature of plastic flow due to dislocation avalanches and their
interactions (Weiss et al., 2007). Digital image correlation (DIC) at
microscopic scale also demonstrates the presence of localized deforma-
tion bands at grain scale in macro-size polycrystalline materials due to
local hardening (nano-precipitates) followed by softening (Charpagne

∗ Corresponding author.
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et al., 2021; Marano et al., 2019). When the tested specimen is macro-
scopic, or the material contains a high density of grain boundaries,
dislocation avalanches are hindered, and the flow becomes quasi-
continuous, explaining why it has not been necessary to model this
intermittency in traditional macroscopic industrial problems. However,
with advances in nanotechnology and the increasing production of
micro-metric components, developing a model that accounts for the
spatial and temporal intermittency of plasticity and is usable in FE
codes becomes necessary (Zepeda-Ruiz et al., 2021). Understanding
crystalline plasticity at this scale opens the door to a wide range of
new engineering applications, such as micro-machining and the design
of novel materials like hierarchical steels (Xu et al., 2022b; Zhu et al.,
2016; Xu et al., 2022a).

Let us acknowledge that at atomic scales, molecular dynamics
(MD) (Fernández-Castellanos et al., 2021; Patinet et al., 2011) and
discrete dislocation dynamics (DDD) (Gómez-García et al., 2006; Csikor
et al., 2007) models accurately and ‘‘naturally’’ reproduce the corre-
lated nature of dislocation avalanches and their power law amplitude
https://doi.org/10.1016/j.ijsolstr.2024.113171
Received 22 September 2024; Received in revised form 11 November 2024; Accept
vailable online 10 December 2024 
020-7683/© 2024 Published by Elsevier Ltd. 
ed 26 November 2024

https://www.elsevier.com/locate/ijsolstr
https://www.elsevier.com/locate/ijsolstr
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
http://dx.doi.org/10.5281/zenodo.14266823
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
https://github.com/Mathias-Lamari/Time-discontinuous-plasticity
mailto:mathias.lamari@minesparis.psl.eu
https://doi.org/10.1016/j.ijsolstr.2024.113171
https://doi.org/10.1016/j.ijsolstr.2024.113171


M. Lamari et al.

s
f
c

a
(
a
a
a
t
s
s

i

t

h
o

t
o
r
f
d
t
s
u
i
d
t
i
f

g
w
s
T
(

d

1
t
b
a

d

p

T

n
m

(

International Journal of Solids and Structures 309 (2025) 113171 
distribution (Weiss et al., 2007). While these models help under-
tand the physics behind the intermittency and organization of plastic
low, they cannot be used at industrial scales due to excessively high
omputation times.

Several microscopic plasticity models have been recently proposed
in the literature to account for the statistical structure of intermittent
coustic emission generated by plastic flow bursts without deviating
too much) from the continuum mechanics formalism. A noteworthy ex-
mple of such models is the mesoscale tensorial model (MTM) (Salman
nd Truskinovsky, 2011, 2012; Baggio et al., 2023b,a). Models that
ttempt to introduce intermittency into crystal plasticity also exist,
ypically relying on the introduction of stochasticity in an internal
ystem variable (dislocation density Weiss et al., 2015, additional
tress added to the yield limit Wijnen et al., 2021; Vermeij et al.,

2024, critical resolved shear stress Gélébart, 2021) or within the solver
tself (Yu et al., 2021b,a). These modifications succeed in predicting

the intense localization of plastic deformation into finite bands, and
size dependence of the yield stress in microscopic specimens. However,
they rely on introducing probabilities into the crystalline plasticity
model itself and thus require prior knowledge of the laws governing the
correlations of plastic flows. They are also computationally expensive
due to the stochastic treatment at each time step. Recently, Ruestes
and Segurado (2024) used a kinetic Monte Carlo selection process
o control the activation of microscopic slip mechanisms, achieving

similar results. Without introducing any stochasticity, Ryś et al. (2024)
ave demonstrated that spontaneous localization of plastic strain can
ccur in crystal plasticity due to the yield-vertex effect when the

latent-hardening of slip systems is higher than the self-hardening.
In this work, we propose a new approach to account for the intermit-

ency of plastic deformation that does not rely on the prior knowledge
f the statistics of plastic flow bursts. We start from a standard isotropic
ate-independent J2-plasticity formulation, which is implemented in a
inite element solver using the standard implicit time-stepping with ra-
ial return algorithm. We introduce a single strictly positive parameter,
he plastic strain threshold denoted as 𝛥𝑝min, which corresponds to the
mallest (cumulative) plastic strain increment that the material may
ndergo at a particular time under load. This plastic strain threshold
s physically associated to the smallest dislocation avalanche that can
evelop. Solving the equation of elasto-plasticity under the constraint
hat the plastic increment cannot be smaller than the plastic threshold
s performed with very limited modification of the standard numerical
ormulation of departure. Typically, our implementation in the FEniCSX

FEA library (Scroggs et al., 2022) requires modifying a single line of
code to take this inequality constraint into account and depart from
standard continuum finite element plasticity. Although the proposed
model was derived by effectively manipulating a standard continuum
plasticity finite element code to trigger the intermittence effects, we
propose a set of constitutive equations for the time-discontinuous plas-
ticity model, of which the modified FEA model mentioned previously
is a rigorous implicit time-stepping implementation. Our presentation
of the method will then follow a rather classical mode of exposure,
starting from the continuum equations before deriving the associated
fully discrete finite element model. A validation of the approach is
made by implementing the model in another finite element code,
namely Zset (Besson and Foerch, 1997), thus showing that the model
goes beyond a particular implementation.

The simulations performed using this modified, discontinuous, en-
ineering plasticity formulation are remarquable in several ways. Note-
orthily, the plastic flow arises in the form of plastic bands, which re-

ults in serrations on the load–displacement curve of tensile specimens.
hese bands are akin to the one observed in Portevin-Le-Chatelier
PLC) simulations (Colas et al., 2014; Wang et al., 2011; Lamari et al.,

2024; Guillermin et al., 2023), but in contrast to strain ageing effects,
they result from a rate-independent model formulation. In this sense,
the phenomenology of the plastic flow generated by the proposed
formulation shares resemblance with the Lüders effect, that would in
2 
our case be triggered repeatedly rather than once in the case of Lüders
band propagation. Remarkably, the proposed model is discontinuous
but does not exhibit features of instability encountered in softening
plasticity models. There is no dependency of the band statistics (inten-
sity and width) to mesh size (providing that the level of refinement
is sufficient to describe strain gradients). In addition, it will be shown
that the Newton solver associated with the finite element force balance
equations converges in a well-behaved manner, exhibiting the expected
quadratic local convergence.

The paper is organized as follows. In Section 2, the physical moti-
vation of the proposed model is given, followed by a presentation of
the time-discontinuous model and its FE discretization. In Section 3,
a first simulation under uniform fields is presented, followed by a ref-
erence simulation with complex dogbone geometry. The methodology
to analyze and quantify the complex plastic activity appearing in the
simulations is then given. Section 4 is dedicated to the use of this
methodology to analyze the effect of different simulations and model
parameters on the model response. Finally, Section 5 is devoted to
the analysis of power law distributed plastic events, spatio-temporal
analysis of plastic avalanches. Finally, the results of a tension test of a
plate with a hole are discussed to highlight the potential of the model
for application to structural computations.

2. Model formulation

2.1. Physical foundation

Recently, Perchikov and Truskinovsky have emphasized the fun-
amentally quantized nature of plastic deformation in crystalline ma-

terials (Perchikov and Truskinovsky, 2024), which occurs in a time-
independent manner. In most metallic crystalline materials at room
temperature, the most common deformation mechanism is dislocation
slip. The displacement of a dislocation line induces a local displacement
of 𝑏, which is the norm of the Burgers vector (typically ≈2 × 10−10 m
in iron Lamari et al., 2024). In micro-scale samples (sample size 𝐿 ≈
0−6 m) the displacement of a dislocation from one Peierls valley to
he next induces a plastic deformation of ≈2 × 10−4, which is small
ut not infinitesimal. In situ observation of dislocation gliding shows
 phenomenon that is very abrupt, occurring at the speed of sound in

metals (Oh et al., 2009; Yu et al., 2015). From the point of view of the
observer it can be seen as instantaneous. Therefore, in this work we
will present a model that is time-discontinuous, time-independent and
with a minimum plastic strain increment, called the plastic threshold
and denoted 𝛥𝑝min with a value of ≈2 × 10−4.

In single crystals, the absence of grain boundary screening of the
islocation long-range stress makes the displacement of one dislocation

prone to induce motion of other dislocations in parallel slip planes,
creating an avalanche of plastic deformation (Brown, 2012). In micro-
scale materials, dislocation sources are rare and hindered by surface
effects (Zhang et al., 2017; Uchic et al., 2009). This makes the system
rone to reach self-organized criticality, leading to larger dislocation

avalanches and scale-free intermittent plasticity (Dimiduk et al., 2006).
herefore, the model we propose must be scale-free and prone to

promote plastic strain bursts (i.e. plastic deformation increment >
𝛥𝑝min).

While the model is primarily intended for crystal plasticity to be
comparable with metallic crystal experiments, for simplicity we will
propose our model in the framework of isotropic J2 plasticity. This is
ot completely unphysical, since intermittent plasticity is also found in
etallic glasses (Okuyucu et al., 2023). While dislocation gliding is not

the mechanism of plastic deformation in metallic glasses, the various
mechanisms (Greer et al., 2013) such as the shear transformation zone
STZ) (Chevalier et al., 2018; Yan et al., 2010) also induce plastic

deformation that is not locally infinitesimal. Plastic bands are also
observed. The plastic threshold concept still applies and we will take
its value to be ≈ 2 × 10−4 for simplicity.

https://docs.fenicsproject.org/
http://www.zset-software.com/
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In the following, the terms plastic burst or plastic jump are primarily
used to describe significant plastic events occurring over a substantial
region of the specimen. The term avalanche is used occasionally, in
line with its usage in the physics community, despite the fact that the
simulation does not directly involve dislocation concepts and that the
plastic burst occurs in only one numerical step, as will be shown below.

2.2. Continuum plasticity

In this section, the equations of basic continuum elasto-plasticity
re recalled for a classical rate-independent J2-plasticity including an
sotropic hardening law. This will clarify where the time-discontinuous
lasto-plasticity model introduced in the following section diverges
rom the classical continuous framework.

Linearized continuum mechanics. The equations of elasto-plasticity
are solved over a space–time domain 𝛺 ×  where 𝛺 ⊂ R3 and  =
[0, 𝑇 ]. Let 𝑥 ∈ R3 denote the spatial coordinates of a point of 𝛺 and
let 𝑡 ∈  denote the time variable. The boundary 𝜕 𝛺 is split into a part
𝜕u𝛺 over which time-dependent Dirichlet conditions are applied, and a
part 𝜕t𝛺 over which homogeneous Neumann conditions are applied.

The displacement (𝑥, 𝑡) ↦ 𝑢(𝑥, 𝑡) and Cauchy stress tensor field
𝑥, 𝑡) ↦ 𝝈(𝑥, 𝑡) satisfies the following equations:

div𝝈 = 0 in 𝛺 (1)

𝑢 = 𝑢𝑑 over 𝜕u𝛺 (2)

𝝈 ⋅ 𝑛𝜕 𝛺 = 0 over 𝜕t𝛺 (3)

where 𝑛𝜕 𝛺 denotes the outer normal to the domain boundary and 𝑢𝑑 is
a known function defined over 𝜕u𝛺×  and with values in R3. Volume
orces, including inertial forces are excluded for simplicity.

The infinitesimal strain tensor is defined as

𝜺 = 1
2
(

∇𝑢 + (∇𝑢)𝑇
)

(4)

To close the system, a constitutive relation linking 𝝈 to the time-
history of 𝜺 needs to be introduced.

Constitutive equations. Two additional unknown fields of internal
ariables are introduced, namely the second-order plastic strain tensor

(𝑥, 𝑡) ↦ 𝜺p(𝑥, 𝑡) and the scalar cumulative plastic strain (𝑥, 𝑡) ↦ 𝑝(𝑥, 𝑡).
he constitutive relation of the elasto-plastic material is written as
ollows. The strain tensor can be decomposed into elastic and plastic
arts

𝜺 = 𝜺e + 𝜺p (5)

The Cauchy stress is given by Hooke’s law for isotropic elasticity

𝝈 = C ∶ (𝜺 − 𝜺p) = 𝜆 t r (𝜺e)𝑰 + 2𝜇 𝜺e (6)

where C is the fourth-order elasticity tensor, 𝜆, 𝜇 are Lamé coefficients
and t r (𝜺e) denotes the trace of tensor 𝜺e. The yield surface is defined as

𝑓 (𝝈; 𝑝) = 𝜎vM(𝝈) − 𝑅(𝑝) − 𝜎y s (7)

where 𝑅(𝑝) is the isotropic hardening function which is assumed to be
monotonically non-decreasing, 𝜎y is the initial yield stress and 𝜎vM the
von Mises equivalent stress (𝜎vM =

√

3
2 𝒔 ∶ 𝒔 where 𝒔 is the deviatoric

part of the Cauchy stress tensor). The normal to the yield surface is
defined as 𝒏 = 𝜕 𝑓∕𝜕𝝈. The normality rule for the plastic flow is:
�̇�p = 𝜆𝒏 (8)

The system is closed by the Karush-Kuhn–Tucker (KKT) conditions:

𝑓 𝜆 = 0 (9)

𝜆 ≥ 0 (10)
𝑓 ≤ 0 (11)

3 
The time-integrated multiplier coincides with the cumulative plastic
train 𝑝 in J2-plasticity. This specificity reads as:

𝜆 = �̇� =
√

2
3
�̇�p ∶ �̇�p (12)

Initial conditions. Finally, initial conditions need to be applied to the
fields of internal variables, which take the form 𝑝

|𝑡=0 = 0 and 𝜺p
|𝑡=0 = 𝟎.

2.3. Time-discontinuous plasticity model

In the time-discontinuous plasticity model, the cumulative plastic
strain variable 𝑝 is allowed to increase only by instantaneous events
(bursts) of finite magnitude. To do this, mechanical quantities are
allowed to operate beyond the yield surface, i.e. violate the condi-
tion (11), and return to the yield surface when and only when the
resulting instantaneous increment of cumulative plastic strain is larger
than 𝛥𝑝min ∈ R+∗. The plastic threshold 𝛥𝑝min is the sole additional
parameter of the model, and represents the smallest plastic strain
increment that the material system can accommodate.

To achieve this mathematically, Eq. (8), (9) and (11) are modified,
while the others are retained. The first equation is altered as follows

[[𝜺p]] = [[𝑝]]𝒏− (13)

In this equation, [[∙]] = limℎ→0[∙(𝑡 + ℎ) − ∙(𝑡 − ℎ)], with ∙ being any
quantity such as 𝑝 or 𝜺p, indicates a jump of the considered quantity
at time 𝑡. Notation 𝒏− = limℎ→0 𝒏(𝑡− ℎ) denotes the normal to the yield
urface at time 𝑡, taking the limit from the left if the normal evolves
n a discontinuous manner in time, as this corresponds to the stress
tate before the plastic burst.1 Physically, this means that the stress

state before the plastic burst occurs determines the direction of plastic
yield.

At each time, the plastic strain increment must satisfy new consti-
tutive equations. The set  (𝑡) is defined as the collection of admissible
lastic bursts that comply with the constitutive relations presented

herein. Admissible cumulative plastic strain increments that belong
to the set  (𝑡) will be denoted as [[𝑝]]⋆. The corresponding evolution
of yield surface after the increment [[𝑝]]⋆ is denoted 𝑓+⋆, defined as
𝑓+⋆ = 𝑓 (C ∶ (𝜺 − 𝜺p − [[𝑝]]⋆𝒏−), 𝑝− + [[𝑝]]⋆), with 𝑝− = limℎ→0 𝑝(𝑡 − ℎ).

The first new equation of the time-discontinuous plasticity model
that controls the value of [[𝑝]]⋆ is:

[[𝑝]]⋆𝑓+⋆ = 0 (14)

Eq. (14) is used to express the fact that if there is a non-vanishing
instantaneous plastic flow increment at time 𝑡, its amplitude must be
uch that the mechanical stress returns to the yield surface.

Finally, the plastic strain increment must obey a last equation
ssuring that the system is closed:

[[𝑝]]⋆
⟨

𝛥𝑝min − [[𝑝]]⋆⟩ = 0 (15)

where ⟨ . ⟩ = max{0, . }. This equation means that either the plastic flow
is null, or the increment of cumulative plastic strain is larger than 𝛥𝑝min,
which introduces flow discontinuities in the model.

Then, at time 𝑡 ∈  , the jump of cumulative plastic strain is chosen
s the maximum of all admissible cumulative plastic strains:

[[𝑝]] = max
[[𝑝]]⋆∈ (𝑡)

[[𝑝]]⋆ (16)

Indeed, the set of Eqs. (14) and (15) introduced previously leaves an
indeterminacy. This is because [[𝑝]] = 0 is always a trivial solution. The

1 Notice that in J2-plasticity, the normal tensor remains unchanged during
 plastic burst, i.e.

[[𝒏]] = 0.
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max operation in Eq. (16) specifies that if a jump in plastic strain is
admissible and positive, then it must happen.

The term ‘‘time-discontinuous’’ refers to the fact that when a plastic
urst occurs, certain quantities experience a discontinuity in their
emporal evolution, such as 𝑝, 𝑓 , 𝜺𝐩 due to Eqs. (14) and (15). However,

this is not the case for all quantities, such as 𝝈, 𝜺𝐞, 𝜺 or 𝒏 which may
exhibit either time-continuous or discontinuous behavior depending on
the external conditions.

2.4. Algorithmic implementation

This section outlines the algorithm used to implement the time-
iscontinuous model. A straightforward modification to the radial re-
urn algorithm ensures that plastic strain follows the new constitutive
quations from Eqs. (13) to (16), with the remainder of the procedure
emaining classical. A comprehensive description of the model’s imple-
entation in the finite element solver, the time discretization of all

onstitutive relations, and the integration of the global Newton solver
s provided in Appendix A.

The time interval  = [0 𝑇 ] is divided into 𝑁 time steps. The
quation of continuum mechanics is enforced at discrete times ̄ =
{𝑡0, 𝑡1, … , 𝑡𝑁}, using the finite element method. In the following, 𝑛 will
be an integer between 0 and 𝑁 . As is customary, the quantity 𝑋 at step
𝑛 will be denoted 𝑋𝑛.

Suppose the system’s evolution is known up to step 𝑛. The out-
ut of stress function 𝝈𝑛+1(𝜺𝑛+1; 𝜺

p
𝑛, 𝑝𝑛) is evaluated via an operator-

plitting procedure akin to those that are traditionally employed in
mplicit schemes for classical rate-independent elasto-plastic constitu-

tive laws (Besson et al., 2009; de Souza Neto et al., 2011; Simo, 1998).
This is done as follows, at time 𝑡𝑛+1:

• Determine the direction of the plastic flow

𝒏−𝑛+1 =
𝜕 𝑓
𝜕 𝜎

|

|

|

|𝝈𝑛+1=C∶(𝜺𝑛+1−𝜺
p
𝑛), 𝑝𝑛+1=𝑝𝑛

(17)

• Evaluate yield function 𝑓⋆ assuming that no plastic increment
occurs.

𝑓⋆
𝑛+1 = 𝜎eq

(

C ∶ (𝜺𝑛+1 − 𝜺p𝑛)
)

− 𝑅(𝑝𝑛) − 𝜎y (18)

• Discriminate between elastic and plastic behavior:

– if 𝑓⋆
𝑛+1 <= 0, set 𝑝𝑛+1 = 𝑝𝑛,

– if 𝑓⋆
𝑛+1 > 0, perform the following two steps:

∗ assume that a plastic jump occurs within time step
]𝑡𝑛 𝑡𝑛+1], i.e. (𝑝𝑛+1 − 𝑝𝑛) ≠ 0 (in that case, Eq. (14)
specifies that the stress must return to the yield limit
at the end of the time step). Look for test plastic
increment 𝛥𝑝⋆ satisfying

𝜎eq
(

C ∶ (𝜺𝑛+1 − 𝜺p𝑛 − 𝛥𝑝⋆𝒏−𝑛+1)
)

− 𝑅(𝑝𝑛 + 𝛥𝑝⋆) − 𝜎y s = 0
(19)

using a Newton–Raphson algorithm.
∗ Compare 𝛥𝑝⋆ to 𝛥𝑝min. If 𝛥𝑝⋆ < 𝛥𝑝min, set 𝑝𝑛+1 = 𝑝𝑛,

otherwise set 𝑝𝑛+1 = 𝑝𝑛 + 𝛥𝑝⋆

• Compute 𝜺p𝑛+1 = 𝜺p𝑛 + (𝑝𝑛+1 − 𝑝𝑛)𝒏−𝑛+1 and return 𝜎𝑛+1 = C ∶
(

𝜺𝑛+1 − 𝜺p𝑛+1
)

A pseudo-code of the radial return algorithm as implemented in the
FEniCSX code is given in Algorithm 1. Compared to a classical radial
return algorithm used in continuum plasticity, only lines 14 to 17 have
been added. Removing these lines will revert to the classical plasticity
approach. The full script used in our FEniCSX simulation, including
4 
geometry and example runs, can be found in this GitHub repository.
Due to limitations related to automatic differentiation in FEniCSX,

hich does not support loops, the maximum number of iterations in the
ewton loops, 𝑁Max, has been set to 1. However, comparisons with Zset

imulations show that this does not significantly affect the simulation
esults, even when the work-hardening behavior is not purely linear.

Algorithm 1 Time-discontinuous radial return (von Mises)
1: Initialize: 𝜺, 𝜺p, 𝑝,C, 𝛥𝑝min, 𝜇 , 𝑅, 𝛿 , 𝑁max
2: Calculate: 𝝈⋆ = C ∶ (𝜺 − 𝜺p)
3: Calculate: 𝑓 = 𝜎vM

(

𝜎⋆
)

− 𝜎y s − 𝑅(𝑝)
4: Calculate: 𝒏− = 𝜕 𝑓∕𝜕 𝜎⋆
5: Set: 𝑖 = 0
6: Set: 𝛥𝑝⋆ = 0
7: while |𝑓 | ≥ 𝛿 and 𝑖 ≤ 𝑁max do
8: Calculate: 𝑓 ′ = −3𝜇 − 𝑑 𝑅

𝑑 𝑝 (𝑝 + 𝛥𝑝⋆)
9: Calculate: 𝛥𝑝⋆ = −𝑓∕𝑓 ′

10: Calculate: 𝝈⋆ = C ∶ (𝜺 − (𝜺p + 𝛥𝑝 ⋅ 𝒏−))
1: Calculate: 𝑓 = 𝜎vM

(

𝜎⋆
)

− 𝜎y s − 𝑅(𝑝 + 𝛥𝑝⋆)
2: Calculate: 𝑖 = 𝑖 + 1
3: end while
4: if 𝛥𝑝⋆ ≥ 𝛥𝑝min then
5: 𝛥𝑝 = 𝛥𝑝⋆

6: else
7: 𝛥𝑝 = 0
8: end if
9: if 𝑓 ≥ 0 then
0: 𝛥𝜺p = 𝛥𝑝 ⋅ 𝒏−
1: else
2: 𝛥𝜺p = 0 ⋅ 𝒏−
3: end if
4: Update: 𝜺p = 𝜺p + 𝛥𝜺p

5: Update: 𝑝 = 𝑝 +
√

2
3𝛥𝜺

p ∶ 𝛥𝜺p
6: Return: 𝜺p, 𝑝

2.5. Equivalence with a two-yield surface model

This section demonstrates the equivalence of the time-discontinuous
lasticity model to a two-yield surface model. Note that all new inter-
retations presented here are not additional properties of the model but
re instead derived from previous equations.

It is assumed that, at time 𝑡, a plastic burst occurs (i.e. [[𝑝]] > 0) in
a region of the system. The tensors 𝒆 and 𝒆𝑒 are the deviatoric parts of
the total and elastic strain tensors (𝜺𝑝 is always deviatoric in von Mises
plasticity). Hooke’s law provides the deviatoric stress component at the
end of the plastic burst:

𝒔 + [[𝒔]] = 𝒔 + 2𝜇[[𝒆𝑒]] = 𝒔 + 2𝜇([[𝒆]] − [[𝜺𝑝]]) = 𝒔 trial − 2𝜇[[𝜺𝑝]] (20)

In Eq. (20), the trial stress 𝒔trial = 𝒔+ 2𝜇[[𝒆]] is the stress reached if all
strain increment is elastic. The von Mises stress corresponding to 𝒔trial is
denoted 𝜎trial

vM . From Eq. (20), the tensor 𝒔trial is the linear combination
of 𝒔 + [[𝒔]] and [[𝜺𝑝]]. From Eq. (13), [[𝜺𝑝]] is colinear to 𝒔 + [[𝒔]], since
he normal to the yield surface 𝒏 is the same before and after plastic
elaxation. Then 𝒔trial is colinear to 𝒔 + [[𝒔]]. Therefore, the following

normalized tensors are equal:
√

3
2
𝒔 + [[𝒔]]
𝜎+vM

=
√

3
2
𝒔trial

𝜎trial
vM

where 𝜎+vM =
√

3
2
(𝒔 + [[𝒔]]) ∶ (𝒔 + [[𝒔]])

(21)

We deduce from the last Eqs. (20) and (21), and the normality rule of
plastic flow Eq. (13) that:
+ trial
𝜎vM = 𝜎 vM − 3𝜇[[𝑝]] (22)
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Fig. 1. Representation of the lower and upper yield surfaces in the principal stress
asis. Yielding occurs when a material point exceeds the upper yield surface, and the
lastic strain increment is determined relative to the lower yield surface.

After the plastic jump, the yield surface function is null:

𝜎+vM = 𝜎ys + 𝑅(𝑝 + [[𝑝]]) (23)

Combining Eqs. (22) and (23), the relationship between 𝜎trial
vM and [[𝑝]]

becomes straightforward:

𝜎trial
vM = 𝜎ys + 𝑅(𝑝 + [[𝑝]]) + 3𝜇[[𝑝]] (24)

By substituting the condition [[𝑝]] ≥ 𝛥𝑝min in Eq. (24), the following
ondition on the von Mises stress is derived to predict the occurrence
f plastic burst:

𝜎trial
vM ≥ 𝜎ys + 𝑅(𝑝 + 𝛥𝑝min) + 3𝜇 𝛥𝑝min (25)

The latter condition is equivalent to defining an upper yield surface
that describes the onset of yielding. Linear isotropic hardening is
assumed for the remainder of the article to simplify the interpretation of
simulations, i.e. 𝑅(𝑝) = 𝐻 𝑝, 𝐻 being the hardening modulus. Note that
the model can be applied to any form of non-decreasing hardening..
Eq. (26) is then simplified:

𝜎trial
vM ≥ 𝜎ys +𝐻 𝑝 + (3𝜇 +𝐻)𝛥𝑝min (26)

It means that as soon as 𝜎trial
vM reaches this critical level, a plastic burst

akes place. In Fig. 1, a representation of the lower and upper yield
urfaces in the principal stress space is given. Yielding occurs when the

stress in a material point of the system exceeds the upper yield surface,
nd the plastic strain increment is determined relative to the lower

yield surface. The difference between the two yield surfaces is constant
nd equal to (3𝜇+𝐻)𝛥𝑝min. This constant gap explains visually why in

the time-discontinuous model, the plastic strain increment cannot be
infinitesimal for a given 𝛥𝑝min.

3. Results

To explore qualitatively and quantitatively the properties of our
ime-discontinuous model, we first simulate a simple 1D geometry
nder uniaxial tension. Then, an analytical solution is found for ho-
ogeneous deformation under any triaxiality condition and compared
ith simulations. Finally, more complex geometries are tested under
niaxial tension. The model has been implemented independently in
he FEniCSX (Scroggs et al., 2022) and Zset (Besson and Foerch, 1997)
olvers and both solvers deliver the same results.
5 
3.1. Simulations with uniform fields

A one-dimensional geometry consisting of 𝑁 hexahedral elements
ligned along the 𝑂𝑥 axis is used in this section, as depicted in Fig. 2(a).
n faces orthogonal to the 𝑂𝑥 axis, mixed conditions are imposed. At

each numerical step, the displacement increment component along 𝑂𝑥
is fixed (0 for the left face at the origin, 𝛥𝑢 for the right face), while
the other components are left free, except at points A and O, to suitably
fix the rigid body motion (details in Fig. 2(a)). The other surfaces are
free. The initial yield stress 𝜎ys is set to 100 MPa, the linear hardening
rate 𝐻 to 10 GPa, the Young modulus 𝐸 to 200 GPa, and the Poisson
ratio 𝜈 to 0.3. The imposed displacement step 𝛥𝑢 corresponds to a strain
increment 𝛥𝜀𝑥𝑥 in the tensile direction of 3 × 10−6 at each loading step.
The plastic threshold 𝛥𝑝min is set to 2 × 10−4. For the simulations
to accurately reflect the time-discontinuous model under displacement
boundary conditions, it is necessary to have, for all component i,j, that
𝛥𝜀𝑖𝑗 ≪ 𝛥𝑝min.

The first noteworthy feature of the simulation is the spatial ho-
mogeneity of both stress and strain fields across the entire geometry
under tensile loading. Without introducing defects in the mesh or the
elastic/plastic properties of the material, there is no localization of
stress, regardless of the number of elements. Under tensile condition,
the stress tensor has only one nonzero component along the 𝑂𝑥 axis.
This test is equivalent to testing a single Gauss point, but this setup
was used in order to demonstrate the absence of localization in this
particular case.

The tensile curve (stress 𝜎𝑥𝑥 vs strain 𝜀𝑥𝑥) is shown in Fig. 2(b). The
evolution of the lower (red) and upper (purple) yield surfaces as defined
by Eqs. (23) and (26) are also incorporated for clarity, even though it
must be emphasized that they are not used explicitly in the algorithm.

he specimen first deforms elastically until the von Mises stress reaches
he upper yield surface. Then, the entire specimen undergoes plastic
eformation, causing the stress to decrease through elastic relaxation
ntil it reaches the lower yield surface. The plastic strain burst occurs
ithin one numerical step. Then, the phenomenon repeats but with
 hardened material due to linear isotropic hardening. Thus, periodic
errations are observed on the stress–strain curve; each stress increase
orresponds to purely elastic loading of the material with a slope equal
o the Young modulus; each drop corresponds to plastic deformation of
he entire specimen.

Fig. 2(c) gives the evolution of equivalent plastic strain during the
imulation. As expected, plastic strain increases by steps, each plastic
urst occurring in one numerical increment and corresponding to a
tress drop on the tensile curve. Only two values of plastic strain
ncrement [[𝑝]] are possible at each numerical step, as demonstrated
n the next Section 3.2, for any triaxiality conditions. If no plastic
eformation occurs, [[𝑝]] is 0. If a plastic burst occurs, [[𝑝]] is given by:

[[𝑝]] = 3𝜇 +𝐻
𝐸 +𝐻

𝛥𝑝min (27)

The last Eq. (27) is valid under uniaxial tension. When the Poisson ratio
𝜈 = 0.5, then [[𝑝]] = 𝛥𝑝min. The drop of von Mises stress at each plastic
event [[𝜎vM]] is given by:

[[𝜎vM]] = −𝐸[[𝑝]] (28)

The Eqs. (27) and (28) are only valid for uniaxial straining.

3.2. Analytical homogeneous solution under any triaxiality

In this section, a single Gauss point is considered. The material
parameters are chosen to be the same as in Section 3.1. We control the
triaxiality factor 𝑇 defined as the ratio between the hydrostatic stress
𝜎h and the equivalent stress 𝜎vM:

𝑇 =
𝜎h
𝜎vM

with 𝜎h = tr (𝝈) ∕3 (29)

https://docs.fenicsproject.org/
http://www.zset-software.com/
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Fig. 2. (a) Geometry used for the homogeneous simulations. The number 𝑁 of aligned hexahedral elements can be set to any integer. Prescribed displacements are imposed on
he left and right faces of the sample. Displacement components not indicated are left free. All other faces are free. (b) Evolution of stress 𝜎𝑥𝑥 as a function of strain 𝜀𝑥𝑥 for the

homogeneous simulation. The lower yield surface (red) and the upper yield surface (purple) have been indicated. (c) Corresponding evolution of the cumulative plastic strain as
 function of applied strain.
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For all tested 𝑇 values, which ranged from 0 (pure shear) to 2/3
equibiaxial), the results in terms of equivalent stress and equivalent
lastic strain are qualitatively identical to what is presented in Fig. 2.

Periodic stress drops linked with plastic bursts are found, and both [[𝑝]]
nd [[𝜎vM]] admit only one given value during plastic bursts, as in the
ensile case. For pure shear, Eq. (27) is not satisfied and we have instead
[𝑝]] = 𝛥𝑝min, independently of the values of 𝐸 and 𝜈.

To understand this difference and calculate the theoretical value of
he stress drop and plastic strain increase during a plastic burst, we

consider a time 𝑡 at which a plastic burst occurs. Independently of the
triaxiality factor, the two-yield surfaces concept is respected. The value
of the von Mises stress just before the jump corresponds to the value of
he upper yield surface prior to the plastic strain increment, i.e.:

𝜎vM = 𝜎y s +𝐻 𝑝 + (3𝜇 +𝐻)𝛥𝑝min (30)

The value of the equivalent stress after plastic deformation corresponds
o the value of the lower yield surface accounting for the plastic strain
ncrement:

𝜎vM + [[𝜎vM]] = 𝜎y s +𝐻(𝑝 + [[𝑝]]) (31)

Therefore:

[[𝜎vM]] = 𝐻[[𝑝]] − (3𝜇 +𝐻)𝛥𝑝min (32)

In the last Eq. (32), [[𝜎vM]] and [[𝑝]] are both unknown, and a second
quation is necessary to obtain their values. This second equation is
btained by using the prescribed total deformation. As previously
tated in Section 3.1, each component of the strain tensor at each
umerical step must be negligible with regards to the plastic threshold
𝑝min. Therefore, even during the plastic burst, the total strain tensor

of the system does not change:

[[𝜺]] = [[𝜺e]] + [[𝜺p]] = 0 (33)

In continuum plasticity, if the strain rate is negligible, then the
plastic strain rate and elastic strain rate are both individually negligible.
One important difference in our time-discontinuous approach is that
while [[𝜺]] is zero during the instantaneous plastic burst, [[𝜺e]] and [[𝜺p]]
are not infinitesimal, and we have:

[[𝜺e]] = −[[𝜺p]] (34)

To obtain a scalar relationship between [[𝑝]] and [[𝜎vM]], the tensor
ontraction of both sides of Eq. (34) with [[𝝈]] is taken. The right-hand
ide is simplified by using successively the normality rule (Eq. (13)),

the deviatoric nature of the normal tensor 𝒏 and the invariance of 𝒏
during the plastic burst:
[[𝝈]] ∶ [[𝜺p]] = [[𝑝]] ([[𝝈]] ∶ 𝒏) = [[𝑝]] ([[𝒔]] ∶ 𝒏) = [[𝑝]][[𝜎vM]] (35) s

6 
The tensor contraction [[𝝈]] ∶ [[𝜺e]] is simplified by decomposing the
stress and elastic strain tensors into their hydrostatic part 𝝈h and 𝜺eh
and their deviatoric part 𝒔 and 𝒆e, and using the Hooke law (𝐾 is the
ulk modulus):

[[𝝈]] ∶ [[𝜺e]] = [[𝝈h]] ∶ [[𝜺eh]] + [[𝒔]] ∶ [[𝒆𝐞]] = 1
3𝐾

[[𝝈h]]2 +
1
2𝜇

[[𝒔]]2 (36)

The expression (36) is furthermore simplified using [[𝝈h]]2 = 3[[𝜎h]]2

= 3𝑇 2[[𝜎vM]]2 and [[𝒔]]2 = 2∕3[[𝜎vM]]2:

[[𝝈]] ∶ [[𝜺e]] =
(

𝑇 2

𝐾
+ 1

3𝜇

)

[[𝜎vM]]2 (37)

Combining Eqs. (35) and (37), a second relationship between [[𝑝]]
nd [[𝜎vM]] is thus obtained:

[[𝜎vM]] = −𝑀𝑇 [[𝑝]] with 𝑀𝑇 = 1
𝑇 2

𝐾 + 1
3𝜇

=
3𝜇 𝐸

(27𝜇 − 9𝐸)𝑇 2 + 𝐸
(38)

The equivalent elastic modulus 𝑀𝑇 introduced in Eq. (37) is the
armonic mean of 𝐾∕𝑇 2 and 3𝜇 and represents the coefficient of

proportionality between the drop in von Mises stress and the increase
in equivalent plastic strain during a plastic burst. It can only be used
when the system has no increase in its total strain. In uniaxial tension
(𝑇=1/3), 𝑀𝑇 becomes 𝐸, as stated in Eq. (28). In pure shear (𝑇=0),
𝑀𝑇 becomes 3𝜇. When 𝑇 tends to infinity (pure hydrostatic state),
𝑀𝑇 becomes equivalent to 𝐾∕𝑇 2. Combining Eqs. (32) and (38), the
relationship between [[𝑝]] and 𝛥𝑝min is found:

[[𝑝]] = 3𝜇 +𝐻
𝑀𝑇 +𝐻

𝛥𝑝min (39)

Finally, in uniaxial tension, Eq. (39) reduces to Eq. (27), and in pure
hear, [[𝑝]] is equal to 𝛥𝑝min, as found in the simulations. The model
esponse is thus entirely understood under homogeneous deformation,
or any triaxiality.

3.3. Tensile test on the dogbone geometry

By applying the model to more complex geometries, the macro-
scopic response becomes very different from the homogeneous case.
The example of a 3D dogbone flat specimen is described in this section,
whose precise geometry and dimensions are depicted with several 3D
meshes tested in Fig. 3. Simulations are performed in 3D and there are
12 elements in the thickness for the finest mesh. The actual mesh used
in this section consists of linear tetrahedra and is depicted in Fig. 3(d).

he impact of using the other meshes will be discussed in the following
ection. Uniaxial displacement is imposed on the left and right faces,
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Fig. 3. (a) Dogbone geometry used in the reference simulation. Dimensions used for the reference simulation are: 𝐿 = 20, gauge length = 14, 𝑙 = 6, 𝑒 = 0.25, 𝑟 = 2. The element
size is denoted ℎ. (b) Meshes used for testing the model (tetrahedral, hexahedral and inclined hexahedral). Representation of the FE meshing in the zoomed area of (a) for (c) a
tetrahedral meshing with ℎ∕𝐿 = 1/100, (d) a tetrahedral meshing with ℎ∕𝐿 = 1/200, (e) a tetrahedral meshing with ℎ∕𝐿 = 1/250, (f) a tetrahedral meshing with ℎ∕𝐿 = 1/400,
(g) a hexahedral meshing with ℎ∕𝐿 = 1/100, (h) an inclined hexahedral meshing with ℎ∕𝐿 = 1/250. The mesh used in the tetrahedral cases discussed after have a ℎ∕𝐿 ratio of
1/400.
which are considered clamped (no transverse displacements), and the
other faces are free of forces. The elastic and plastic properties of the
material, as well as the boundary conditions and the value of the plastic
threshold 𝛥𝑝min, are the same as those presented in Section 3.1.

The tensile curve is drawn in Fig. 4(a), obtained by volume aver-
aging of 𝜀𝑥𝑥 and 𝜎xx over the gauge length, accompanied by maps of
cumulative plastic deformation (c) and the corresponding increment (d)
at several mean strain levels. Unlike the 1D case, deformation is not
homogeneous along the specimen. Plastic strain bands of finite width
appear. The width of these bands, defined as the length of elements
along the 𝑂𝑥 axis that yield at a given increment, is much larger than
the width of an element ℎ (see Fig. 4(b)). The mean plastic strain
increment in the deformation band is an order of magnitude greater
than the plastic threshold 𝛥𝑝min.

On the stress–strain curve in Fig. 4(a), it can be observed that, after
an elastic regime, serrations are present in the curve. Each serration
corresponds to the appearance of a macroscopic plastic strain band on
the specimen. From 𝜀1 = 0.06% to 𝜀4 =0.17% strain, a stress plateau is
observed, similar to materials exhibiting static strain ageing inducing
a Lüders plateau. Beyond 0.17% strain, the serrations continue. The
plateau effect tends to disappear as the strain increases, and the average
stress evolution tends to align with the linear hardening rate 𝐻 . This
second behavior is analogous to a type B or C PLC effect (Yilmaz,
7 
2011; Lamari et al., 2024), notably observed in materials exhibiting
dynamic strain aging. Such a behavior is also similar to a well known
stick–slip behavior (Perfilyev et al., 2013), as observed in slip or
velocity-weakening friction laws (de Geus and Wyart, 2022).

The features of the stress–strain curve can be understood by ana-
lyzing the dynamics of appearance of plastic bands. An animation of
the evolution of cumulative plastic strain map during the simulation
is available here (Kerfriden, 2024). More videos are available in the
following zenodo repository (10.5281/zenodo.14266823). Snapshots of
cumulative plastic strain and plastic strain increment maps are respec-
tively given in Fig. 4(c) and (d). The first band nucleates at one fillet of
the specimen due to a local von Mises stress concentration. Just before
the first plastic event, a difference of 20 MPa exists between these zones
and the central part of the gauge length. These elements are thus the
first to exceed the upper yield surface and to deform plastically, as
shown at 𝜀1 in Fig. 4(c) and (d). At higher deformation 𝜀2 = 0.07%, they
induce the instantaneous formation of the first traversing band. This
first band induces the yield point phenomenon visible on the tensile
curve. A cut of this first band alongside the 𝑂𝑥 axis is shown in Fig. 4(b).
For each band, we define the mean plastic strain, denoted 𝛥𝑝, and the
width of the plastic band, denoted 𝑤, corresponding to the length of
elements along the 𝑂 axis that yield. More precisely, if 𝐿 is the
𝑥 𝑤

https://www.youtube.com/watch?v=nW0KEG-W4jk
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
https://zenodo.org/records/14266823
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Fig. 4. (a) Evolution of axial stress as a function of axial strain, obtained by integration over the gauge length of the specimen. (b) Evolution of the plastic strain increment
alongside the 𝑂𝑥 axis when a plastic burst occurs at a given numerical step. 𝑤 is the band width, 𝐿 is the specimen length and 𝛥𝑝 is the mean plastic strain in the band. (c)
Series of cumulative plastic strain map and (d) series of plastic strain increment over the dogbone specimen for 6 given strain levels indicated in (a).
starting position of the band on the specimen length, 𝑙 the width of
the specimen and 𝑒 its thickness 𝛥𝑝 is calculated by:

𝛥𝑝 = 1
𝑤 ∫

𝐿𝑤+𝑤

𝐿𝑤

[[𝑝]]
(

𝑥, 𝑙
2
, 𝑒
2

)

𝑑 𝑥 (40)

It is noteworthy that 𝛥𝑝 is always higher than 𝛥𝑝min (here 5 times
higher for the first band). It is recalled that only plastic strain increment
higher than 𝛥𝑝min are accepted in the proposed model. At the edges of
the first band, there is a local stress concentration, causing the second
band to nucleate next to it. This correlated nucleation of bands persists,
as illustrated at 𝜀 = 0.11%. The phenomenon continues until the entire
3

8 
specimen plastically deforms for the first time, marking the end of the
initial plateau on the tensile curve. This step corresponds to 𝜀4 = 0.17%.
Then, in contrast to the Lüders phenomenon, bands still appear along
the gauge length until the end of the simulations, as illustrated for
𝜀5 = 0.28% and 𝜀6 = 0.52%. The localization of consecutive bands
becomes more random, and they do not occur at constant stress in the
presence of hardening.

The convergence of the model is good compared to the continuum
model. The reference simulation has been done with time-discontinuous
plasticity and with continuum plasticity (i.e., with 𝛥𝑝min = 0). The com-
putation time for the former is five times that of the latter. Additionally,
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Fig. 5. Map of plastic strain increment in a region of the specimen for five given plastic events. The instant of their occurrence is indicated on the zoomed part of the tensile
curve from Fig. 4. The map height corresponds to the full width of the gauge length.
the Newton solver used in the overall problem resolution converges
quadratically once the set of Gauss points that will yield and those that
will remain in the elastic regime are determined.

Simulations can be run under force-controlled conditions by re-
placing displacement with traction boundary conditions. In this case,
plastic deformation occurs in bursts at constant force, producing suc-
cessive plateaus in the tensile curve, similar to force-controlled tests
on alloys with the PLC effect (Guillermin et al., 2023) and as observed
in micropillar compression (Uchic et al., 2009). Each plateau on the
stress curve corresponds to plastic deformation bursts occurring within
a single numerical step across the entire gauge length.

3.4. Statistical analysis methodology

A close-up view of the tensile curve from Fig. 4 is depicted in
Fig. 5, alongside maps of plastic strain increment across the specimen
corresponding to the indicated time. Plastic events can occur in two
forms. They can either form bands extending over the whole cross-
section, as discussed in the previous section, or one/few elements
can deform individually. The first kind are called plastic bands, while
the second will be referred to as small plastic events hereafter. Their
respective impact on the tensile curve is different. While the plastic
bands create a drop in stress, the small plastic events only leads to a
change in slope, often barely perceptible to the naked eye.

To capture the effect of each plastic events on the stress curves,
we calculate at each increment 𝑛 of the simulation the quantity 𝛥𝜎 =
−
(

𝜎𝑛+1xx − 𝜎𝑛xx
)

+𝐸 𝛥𝜀𝑥𝑥, with 𝛥𝜀𝑥𝑥 = 𝜀𝑛+1𝑥𝑥 − 𝜀𝑛𝑥𝑥. Stress and strain values
along 𝑂𝑥 are obtained through volumic integration over the gauge
length. During the simulation, 𝛥𝜀𝑥𝑥 (obtained by integration over the
volume of the gauge length) remains almost constant at 3 ⋅ 10−6. The
quantity 𝛥𝜎 is zero only if there is no plastic event in the gauge length.
Otherwise, it is positive. Thus, 𝛥𝜎 is an adequate measure of the effect
of plastic deformation on the average stress.

The distribution of 𝛥𝜎 obtained in the simulation detailed in Sec-
tion 3.3 is presented in Fig. 6 in black in both linear (a) and logarith-
mic (b) scales. The inset of (b) shows the complementary cumulative
density function (CCDF) in logarithmic scale. The distribution of 𝛥𝜎
consists of two distinct parts: above a stress drop of 𝛥𝜎 ≈ 2.5 MPa, it
is bell-shaped, as observed on the linear scale; and below 2.5 MPa, it
has a power law shape, visible on the logarithmic scale by its linear
appearance. On the logarithmic scale, the shape of the distribution
is reminiscent of supercriticality (Zhang et al., 2020; Richeton et al.,
2005), where the distribution of events follows a power law, except for
extreme events that are overrepresented due to a favoring mechanism
(Dragon Kings phenomenon Sornette and Ouillon, 2012). However, the
distribution of big events following a well-defined bell curve pleads
9 
for a difference in the physical origin of the two populations of plastic
events. Therefore, in this paper we will characterize both parts of the
distributions independently. The small events will be analyzed using a
truncated power law. The big events, having a well-defined bell shape,
will be analyzed using a Gaussian distribution. The overall distribu-
tion of 𝛥𝜎 is divided into two parts using a cut-off value, denoted
𝛥𝜎cut, determined empirically from the simulation (here 2.5 MPa). The
probability density function (PDF) of the stress drop 𝑃 (𝛥𝜎) is given by:

if 𝛥𝜎 > 𝛥𝜎cut ∶ 𝑃 (𝛥𝜎) = 𝐻𝑑 ⋅

(

1

𝜎𝑑
√

2𝜋

)

⋅ exp

(

−
(𝛥𝜎 − 𝜇𝜎

𝑑 )
2

2𝜎2𝑑

)

(41)

if 𝛥𝜎 < 𝛥𝜎cut ∶ 𝑃 (𝛥𝜎) = 𝐶𝑑 ⋅ 𝛥𝜎−𝛼𝑒−𝜆𝛥𝜎 (42)

In Eq. (42), the parameters 𝜇𝜎
𝑑 and 𝜎𝑑 are the mean and standard

deviation of the Gaussian distribution, the parameter 𝛼 is the exponent
of the power law, 𝜆 is a parameter that accounts for the deviation
from pure power law due to the non-infinite system size (Zhang et al.,
2020), and 𝐻𝑑 and 𝐶𝑑 are two constants quantifying the respective
weight of the two contributions to the PDF. To obtain those param-
eters, the distribution of small events (< 𝛥𝜎cut) is first calculated. The
exponent 𝛼 and parameter 𝜆 are then extracted using the maximum
likelihood method (Zhang et al., 2020; Clauset et al., 2009), which was
implemented using the ‘‘powerlaw’’ library in python (Alstott et al.,
2014). The latter library also allows to evaluate the likelihood of two
given distributions to represent a distribution. Truncated power law
was better suited than power law, exponential, stretched exponential
and log-normal distribution to model the distribution. To obtain 𝜇𝜎

𝑑 and
𝜎𝑑 , the distribution of big events(> 𝛥𝜎cut) is calculated. The method of
least squares was then used, with a value of 𝐻𝑑 = 1 being imposed.
Finally, the values of 𝐻𝑑 and 𝐶𝑑 are chosen so that the integral of the
two modeled distributions is equal to the integral of the corresponding
part of the distributions of all events.

A problem with the choice of the Gaussian function to model the
PDF of 𝛥𝑝 and 𝑤 is the nonzero probability of negative events, which
is unphysical. However, this probability is negligible. Furthermore,
simple functions with strictly positive support, such as log-normal
distributions, are unsuitable to model the observed distribution because
they are long-tailed and non-symmetric. Gaussian distribution was
therefore used.

For simplicity, we will focus our analysis on the 𝜇𝜎
𝑑 and 𝛼 parameters

to characterize the evolution of each portion of 𝑃 (𝛥𝜎) as we change
the model parameters. Respectively, 𝜇𝜎

𝑑 represents the mean stress drop
associated with plastic bands, and 𝛼 characterizes the nature of the
plastic flow associated with small plastic events. Thus, they are the only
parameters of 𝑃 𝛥𝜎 that will be analyzed afterwards.
( )
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Fig. 6. Statistics of stress drops (black) determined from the reference simulation in (a) linear scale and (b) logarithmic scale. In red is indicated the modeled distribution using
q. (42) (the dashed line is the truncated power law, while the solid line is the Gaussian distribution). The inset of (b) shows the complementary cumulative density function
CCDF) and the power law. There are 5922 events in the data set.
Fig. 7. Statistics of (a) mean plastic strain and (b) band widths (black bar chart) determined from the reference simulation. In solid line is indicated the modeled distribution
using a Gaussian distribution. There are 187 events in the data set.
t
a

Finally, the plastic activity over the 𝑂𝑥 axis has also been analyzed.
The distributions of mean plastic strain 𝛥𝑝 (as defined in Eq. (40))
and the width of the plastic bands 𝑤 (see Fig. 4(b) for a graphical
epresentation) have been determined during the simulations. With

this methodology, all plastic bands are characterized, since they all
cross the 𝑂𝑥 axis, but only a fraction of the small plastic events are
aptured, i.e. the ones situated on the 𝑂𝑥 axis. To further remove from
he statistics the effect of small plastic events, a threshold is done on the
alue of 𝛥𝑝, keeping only those above the threshold. Typically, a plastic
vent is considered a band when 𝛥𝑝 > 3𝛥𝑝min. Hence, only the plastic

activity of plastic bands are analyzed afterwards. The distributions of 𝛥𝑝
nd 𝑤 obtained from the reference simulation have a Gaussian shape,
s shown in Fig. 7 for the reference simulation. This is consistent with
he distribution of 𝛥𝜎 which had a Gaussian part due to plastic bands.
herefore, distributions of 𝛥𝑝 and 𝑤 are also modeled with Gaussian

distribution, as described in Eq. (42). The mean values of 𝛥𝑝 and 𝑤
btained by this method are respectively denoted 𝜇𝑝

𝑑 and 𝜇𝑤
𝑑 .

4. Assessment of the model

In this section, we focus on the behavior of plastic bands. The effects
of smaller-scale plastic events on elastic properties are analyzed in the
subsequent section. If not explicitly stated otherwise, the parameters
used in the simulations will be the same as those used in the preceding
sections and are provided in Table 1. Complete datasets discussed after
an be found at 10.5281/zenodo.14266823.
 f

10 
Table 1
Reference material and simulation parameters.
Parameter Value

Initial yield stress 𝜎ys 100 MPa
Linear hardening rate 𝐻 10 GPa
Young’s modulus 𝐸 200 GPa
Poisson’s ratio 𝜈 0.3
Plastic threshold 𝛥𝑝min 2 × 10−4
Prescribed deformation increment 𝛥𝜀𝑥𝑥 = 𝛥𝑢∕𝐿 3 × 10−6
Ratio mesh size over specimen length ℎ∕𝐿 0.5%

4.1. Mesh sensitivity

The effect of meshing, with some examples displayed in Fig. 3, is
studied in this section. First, the effect of mesh size is tested on linear
tetrahedral elements. Then, the effect of mesh type (tetrahedron vs
hexahedron), and the angles of hexahedra with respect to the tensile
direction are analyzed.

Various ratios of mesh size ℎ over specimen length 𝐿 are tested.
Specimen gauge length and heads have the same element size. The
same conditions are used as described in Section 3.3. The tensile curves
are given in Fig. 8(a). The effective yield strength for ℎ∕𝐿 = 2.5%
is 134 MPa. It is superior to the initial yield strength 𝜎ys because in
ime-discontinuous plasticity the yield surface does not define the stress
t which plasticity begins (see Fig. 1). The effective yield strength

decreases to 132 MPa for ℎ∕𝐿 = 1.5%, and finally converges at 127
MPa for meshes finer than 0.5%. The average flow stress during the
irst plateau is 117 MPa and is mesh independent. The serrations are

https://zenodo.org/records/14266823
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Fig. 8. Effect of varying the ratio of mesh size over specimen length ℎ∕𝐿 on (a) the tensile curves, (b) the statistics of stress drops, (c) the statistics of mean plastic strain and (d)
he statistics of band widths. In (b), (c) and (d), the dots are representative of the probability density function determined from the simulation and the solid line is the modeled

distribution. The color code is indicated in (a). In (a), the tensile curves are shifted in the inset for visibility purposes. In (b), the distributions are indicated in linear scale in the
inset.
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more varied in intensities for coarser meshes, while they become more
eriodic for meshes finer than 0.5%.

The PDF of stress drops 𝛥𝜎 extracted from the simulations are given
in Fig. 8(b) in logarithmic and linear scales. The mean value of stress
rops 𝜇𝜎

𝑑 linked with plastic bands are indicated in Fig. 8(d). The
odeled distribution are also shown. Looking at the statistics of stress
rops reveals that the distribution of 𝛥𝜎 converges for a mesh size
elow 1/100 of the specimen size, with the difference in the average
tress drop 𝜇𝜎

𝑑 being about 1 MPa, which is smaller than the standard
deviation of the distribution (≈2.6 MPa for purple distribution).

In Fig. 8(c) the distributions of mean plastic strain 𝛥𝑝 of bands
btained in the five simulations are indicated, alongside the average
alues of these distributions. All values are normalized by 𝛥𝑝min. The
and strain tends to be smaller for larger mesh elements. The average
alue 𝜇𝑝

𝑑 converges as the mesh size decreases, approaching 5 times
𝑝min. In Fig. 8(d) the distributions of band width 𝑤 obtained in the

five simulations are indicated, alongside the average values of these
distributions. All values are normalized by the length of the specimen
length 𝐿. The band width is larger for coarser meshes. The average
value 𝜇𝑤

𝑑 converges as the mesh size decreases, approaching 4% of the
specimen length L (the standard deviation being 1% of L in compari-
on). Overall, this analysis demonstrates that all relevant distributions

(not just the average values) converge for mesh sizes below 0.5% of the
total specimen length.

The results of the simulations with hexahedral elements are given in
Fig. 9 with the same format as in Fig. 8. The ratio ℎ∕𝐿 is set to 1/400
for hexahedral meshes, with ℎ defined in Fig. 3. Four orientations

of hexahedra have been tested, with angles with respect to the
tensile axis ranging from 45◦ to 90◦ (𝜃 indicated in Fig. 3). The angle
4.74◦ has been selected since it is the orientation observed in isotropic
lastoplastic materials of plastic strain localization bands (Mazière and
orest, 2015). The tensile curves of the 4 simulations (Fig. 9(a)) are
n good qualitative agreement. Looking at the serrations, they appear
ore regular when the mesh is oriented at 90◦ or 60◦ than for smaller

ngles.
 t

11 
The stress drop distributions (Fig. 9(b)) reveals the same division,
with 90◦ and 60◦ Gaussian distribution centered on 9.6 MPa and 54.74◦

and 45◦ distributions centered on 5.7 MPa. The same division can be
bserved in the distributions of band width in Fig. 9(d), with overall

smaller bands for 54.74◦ and 45◦ orientations. However, the mean
lastic strain distributions reveals that while 45◦ mesh phenomenology
s very similar to 60◦ and 90◦ meshes (Gaussian distribution centered
round 𝜇𝑝

𝑑 = 5𝛥𝑝min), the 54.74◦ distribution is significantly differ-
ent. In this case, 𝛥𝑝 distribution (green dots in Fig. 9(c)) contains
two Gaussian-like parts, one centered on 4.5𝛥𝑝min and the other on
7.7𝛥𝑝min. The mean of the 54.74◦ distribution (calculated on simulation
data, not on the Gaussian model) is 6.0𝛥𝑝min, which is significantly
higher than other distributions (standard deviation ≈ 0.6𝛥𝑝min).

The effect of mesh orientation on overall specimen response can
e understood similarly to the effect of mesh orientation on the sim-

ulations of the Lüders phenomenon studied by Mazière and Forest
(2015), within the framework of a classical continuum plasticity model
nd using a softening material. In this work, it is shown that meshes
riented at 54.74◦ allowed for discontinuities in the strain tensor
i.e. infinitesimal localization bands), which were not observed for
eshes oriented at 90◦ (where band fronts were more diffuse). This

is a well-known feature of Lagrange linear and quadratic interpolation
unctions which allow for strain discontinuities along edges but not
nside the elements. Spurious effects arise when elements are crossed by
iscontinuity lines such as strain bands. This could be improved using

Galerkin discontinuous types of elements. In our time-discontinuous
model, similar features are observed, although bands with a width of
one mesh element never appear while they were observed in Mazière
and Forest (2015) for Lüders modeling. A mesh that permits perfect
plastic localization alters the statistics of plastic strain, stress drops
nd band widths. Meshes with a 45◦ orientation also seem to facilitate
he accommodation of more localized bands, but to a lesser extent.
ortunately, when the mesh is more randomly oriented with respect to
he ideal localization band orientation, the statistics of the bands seem
o converge, and the convergence values (mean and standard deviation)
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Fig. 9. Effect of varying the orientation 𝜃 of hexahedral meshes on (a) the tensile curves, (b) the statistics of stress drops, (c) the statistics of mean plastic strain and (d) the
tatistics of band widths. In (b), (c) and (d), the dots are representative of the probability density function determined from the simulation and the solid line is the modeled
istribution. The color code is indicated in (a). In (a), the tensile curves are shifted in the inset for visibility purposes. In (b), the distributions are indicated in linear scale in the
nset.
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match those found for tetrahedral meshes. Therefore, for the model to
ield a mesh-independent response, meshes must be sufficiently refined
nd not oriented in a way that favors the formation of localized bands.

4.2. Effect of the strain increment 𝛥𝜀𝑥𝑥

In the simulation, axial displacement is imposed at the end of the
specimens. This displacement can be linked with a increment of axial
train 𝛥𝜀𝑥𝑥 in the gauge length, which is constant during the whole
imulation. In this section, we examine the convergence of the model

with respect to 𝛥𝜀𝑥𝑥. The mesh consists of tetrahedra with a ℎ∕𝐿 ratio
f 5%.

In Fig. 10(a), the tensile curves are shown for five simulations. When
𝜀𝑥𝑥 is too high, no pronounced serration are observed on the tensile
urve. As it decreases, clear serrations appear (yellow and green). As
𝜀𝑥𝑥 decreases further, serrations tend to become more regular.

The statistics of stress drops, mean plastic strains and band widths
are given for the five simulations respectively in Fig. 10(b), (c) and
(d). For the largest 𝛥𝜀𝑥𝑥, the distribution of stress drops is not dis-
played as, in the absence of serration on tensile curve, they have little
meaning. The distributions of band mean plastic strains and sizes for
𝛥𝜀𝑥𝑥 = 0.5𝛥𝑝min reveal that bands appear in this case, despite the
absence of serration on the tensile curves, and are very diverse in
size and intensity. This apparent contradiction is explained by the fact
that while plastic bands appear and tend to decrease the stress of the
system, the axial stress increment provided to the system 𝐸 𝛥𝜀𝑥𝑥 at each
numerical step is high enough to compensate the drop.

When 𝛥𝜀𝑥𝑥 is decreased, the three distributions converge quickly,
ot only in terms of average values but also in shape. Therefore,

the model response converges when the displacement increment im-
osed at the boundary is small enough. The criterion is for 𝛥𝜀𝑥𝑥 to
e below 0.05𝛥𝑝min. This analysis demonstrates that the presented
odel converges with respect to the incremental change in boundary

onditions.
12 
4.3. Effect of constitutive parameters

The effects of constitutive parameters are studied in this section
n dogbone specimens with tetrahedral meshes. For conciseness, only
ean values of stress drop 𝜇𝜎

𝑑 , band plastic strain 𝜇𝑝
𝑑 and band size

𝑤
𝑑 will be analyzed. Fig. 11(a), (b) and (c) show the effects of 𝛥𝑝min,
arying from 5 × 10−5 to 8 × 10−4 on the evolution of 𝜇𝜎

𝑑 , 𝜇𝑝
𝑑 and 𝜇𝑤

𝑑
etermined from simulations (black dots). In this range, both 𝜇𝜎

𝑑 and 𝜇𝑝
𝑑

increase linearly with 𝛥𝑝min, while the value of 𝜇𝑤
𝑑 changes marginally

(variation well below the standard deviation of each distribution, indi-
ated by a red lines in Fig. 11(c)).

The linear work-hardening modulus 𝐻 was varied from 0, to 10,000
MPa. The corresponding results for the evolution of 𝜇𝜎

𝑑 , 𝜇𝑝
𝑑 and 𝜇𝑤

𝑑 are
given in Fig. 11(d), (e) and (f). For 𝐻 ranging from 0 to 1000 MPa,
no characteristic of the bands evolves. Between 1000 and 10,000 MPa,
oth 𝜇𝜎

𝑑 and 𝜇𝑝
𝑑 decrease by a factor 1.7, while 𝜇𝑤

𝑑 decreases only by a
actor of 1.1.

Finally, the last model parameter tested is 𝜈. It was varied from
 to 0.49. Evolution of 𝜇𝜎

𝑑 , 𝜇𝑝
𝑑 and 𝜇𝑤

𝑑 as 𝜈 is varied are given in
Fig. 11(g), (h) and (i), for two given values of 𝐻 : 10,000 MPa in black,
nd 1000 MPa in blue. For 𝐻 = 10,000 MPa, varying 𝜈 from 0 to 0.49

decreases 𝜇𝜎
𝑑 by a factor of 1.2, 𝜇𝑝

𝑑 by a factor of 1.8 and increases
𝑤
𝑑 by a factor of 1.5. For 𝐻 = 1000 MPa, varying 𝜈 from 0 to 0.49
ecreases 𝜇𝜎

𝑑 by a factor of 1.4, 𝜇𝑝
𝑑 by a factor of 2.3 and increases 𝜇𝑤

𝑑
y a factor of 1.5. Therefore, it is clear that when 𝐻 is larger, the effect
f Poisson’s ratio on the band plastic strain and stress drop intensity is
ess significant. It is also apparent that 𝜈 has a significant impact on the
and width, and that the effect of 𝐻 , while small, is not insignificant, as
 constant factor of 1.1 on 𝜇𝑤

𝑑 is almost always found when comparing
esults obtained for 𝐻 = 10,000 MPa and 𝐻 = 1000 MPa.

While no explanation has been found yet for the dependence of band
width with each parameter, it is possible to understand the evolutions
of band strain and stress drop. Assuming that the fraction 𝜙 of the
plastic band in the specimen is known and remains constant for each
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Fig. 10. Effect of varying the ratio of axial strain increment over plastic threshold 𝛥𝜀𝑥𝑥∕𝛥𝑝min on (a) the tensile curves, (b) the statistics of stress drops, (c) the statistics of mean
plastic strain and (d) the statistics of band widths. In (b), (c) and (d), the dots are representative of the probability density function determined from the simulation and the solid
line is the modeled distribution. The color code is indicated in (a). In (a), the tensile curves are shifted in the inset for visibility purposes. In (b), the distributions are indicated
in linear scale in the inset.
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plastic burst, it is possible to predict the value of the plastic strain in
he band:

[[𝑝]] = 3𝜇 +𝐻
𝜙𝐸 +𝐻

𝛥𝑝min (43)

The Eq. (43), analogous to Eqs. (27) and (39), is derived in the same
ay by replacing [[𝜺p]] by 𝜙[[𝜺p]] in Eq. (33). This formula is valid if

he stress state in the specimen is tensile and strictly uniform. For a
ogbone specimen, the value of 𝜙 for a given band is close to the ratio
etween the band width and the specimen length 𝑤∕𝐿. As the value of
remains a priori unknown in the model, a constant value 𝜙𝑟𝑒𝑓 = 4.5%

s chosen for all future calculations, close to the value of 𝜇𝑤
𝑑 ∕𝐿 found

n the simulation.
Using the previous Eqs. (28) and (43) ([[𝜎vM]] = −𝐸[[𝑝]]), and

assuming a value for 𝜙 = 𝜙𝑟𝑒𝑓 , it is possible to give an estimate
𝜇𝜎
𝑡ℎ𝑒𝑜 and 𝜇𝑝

𝑡ℎ𝑒𝑜 for all simulations (green dashed curves in Fig. 11).
A multiplicative factor between 0.35 and 0.4 has been applied to the
obtained values to be closer to the simulations results (as indicated in
Fig. 11(b), (e), (h) and (k)). This multiplicative factor can be explained
by geometric consideration, making the stress state far from uniform in
the dogbone specimen.

Overall, the proportionality factor between 𝛥𝑝min and both 𝜇𝜎
𝑑 and

𝑝
𝑑 is well explained, alongside the slightly more complex evolution of

those quantities. The small gap between simulation data and modeled
evolution can be explained by the non constant value of 𝜙 in simulation,
especially as 𝜈 change. All model parameters affect the plastic strain in
ands and the consecutive stress drop in a theoretically well-understood
anner. Most model parameters do not affect the band width, but some
arameters, especially 𝜈, do, for reasons that are not fully understood
et.

4.4. Effect of gauge length

To study the impact of geometry on the model response, the gauge
ength 𝐿 has been modified from a value 𝐿𝑟𝑒𝑓 (which was the one used
13 
before) to a value of 2𝐿𝑟𝑒𝑓 . Fig. 11(j), (k) and (l) display the effects of
𝐿 on the evolution of 𝜇𝜎

𝑑 , 𝜇𝑝
𝑑 and 𝜇𝑤

𝑑 determined from simulations. The
average value of band widths 𝜇𝑤

𝑑 evolves proportionally to the gauge
length, with a factor of proportionality of 4%, which is the average
fraction 𝜙 of the specimen in the plastic band in the reference state
(see Fig. 10(d)). This means that the ratio 𝜙 = 𝜇𝑤

𝑑 ∕𝐿 remains constant
when 𝐿 is modified. On the other hand, changing the gauge length has
no effect on 𝜇𝜎

𝑑 and 𝜇𝑝
𝑑 , which was expected from Eqs. (28) and (43),

ince 𝜙 remains constant as 𝐿 changes and other parameters do not
epend on 𝐿.

Simulation with dogbone geometries transformed under homothetic
ilatation have been performed. Dilatation factors of 2 and 4 have been
ested (results not shown here). Again, all dimensions of the bands

evolve proportionally with the corresponding dimensions of the spec-
men (band width with specimen length, band height with specimen

width and band thickness with specimen thickness). Other features of
the bands remain unaffected by homothetic transformation (band mean
plastic strain and stress drop intensity). The model is thus homothetic.
This result is consistent with the absence of an internal length in the
model. Only a plastic threshold has been introduced, which is not
linked with any length.

5. Discussion

5.1. Statistics of stress drop amplitude and frequency

In the previous sections, it has been demonstrated that the plastic
vents occur following two distributions: a Gaussian part (big plastic
vents) and a power law part (small plastic events). The properties of
ig plastic events alongside the effect of model parameters on them
ave been extensively analyzed in the previous sections. Here, we
nalyze the truncated power law distribution.

In Figs. 8, 9 and 10(b) the distributions of stress drops in logarithmic
scales are represented for the simulations testing the effects of mesh
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Fig. 11. Effect of plastic threshold 𝛥𝑝min on (a) 𝜇𝜎
𝑑 , (b) 𝜇𝑝

𝑑 and (c) 𝜇𝑤
𝑑 . Effect of work-hardening modulus 𝐻 on (d) 𝜇𝜎

𝑑 , (e) 𝜇𝑝
𝑑 and (f) 𝜇𝑤

𝑑 . Effect of Poisson’s ratio 𝜈 on (g) 𝜇𝜎
𝑑 , (h)

𝑝
𝑑 and (i) 𝜇𝑤

𝑑 . Effect of gauge length 𝐿 on (j) 𝜇𝜎
𝑑 , (k) 𝜇𝑝

𝑑 and (l) 𝜇𝑤
𝑑 . In black are indicated the results from simulations. For 𝜈, two different values of 𝐻 were tested. The values

found for 𝐻 = 1000 MPa is indicated in blue, and the values found for 𝐻 = 10,000 MPa is indicated in black. In green dashed line are the theoretical evolutions found using
Eqs. (28) and (43) using the reference parameters, as written for each figure.
size, orientation, and prescribed displacement at boundaries, respec-
tively. The simulation results (dots) are displayed with the modeled
truncated power law (solid line). When the mesh size is too big, or
the axial strain 𝛥𝜀𝑥𝑥 too large, deviation from power law is observed
or stress drop events smaller than 10−1 MPa. However, when ℎ∕𝐿 is
ower than 0.5%, and 𝛥𝜀𝑥𝑥∕𝛥𝑝min lower than 1%, then the stress drop

distribution follow indeed a power law for its smaller events. For any
orientation of the hexahedral mesh, a good match is found between the
stress drop distribution and the power law.

The value of the exponent of the power law 𝛼 is presented for
ll simulations in Fig. 12. Fig. 12(a), (b) and (c) show the values of
14 
𝛼 for non-model parameters (ℎ∕𝐿, angle 𝜃 of mesh and 𝛥𝜀𝑥𝑥∕𝛥𝑝min).
The values of 𝛼 range from 1.0 to 1.5. More precisely, one group of
simulations lies around 1.0, while a second group lies between 1.3 and
1.5. The first group corresponds to simulations with a high ratio of
ℎ∕𝐿 and 𝛥𝜀𝑥𝑥∕𝛥𝑝min, where the simulation distribution did not follow
a power law, or with a mesh consisting of hexahedra oriented at 𝜃 =
54.74◦, where the plastic events showed atypical and unrepresentative
behavior. The second group consists of simulations with finer meshes
and prescribed displacements. Simulations with hexahedral meshes that
are not aligned too favorably with the ideal orientation of the plastic
bands have the same exponent value as simulations with fine enough
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Fig. 12. Evolution of power law exponent 𝛼 as a function of (a) ℎ∕𝐿, (b) 𝜃 (as defined for hexahedral elements), (c) 𝛥𝜀𝑥𝑥∕𝛥𝑝min, (d) 𝐿∕𝐿𝑟𝑒𝑓 , (e) 𝛥𝑝min∕𝛥𝑝
𝑟𝑒𝑓
min, (f) 𝐻 , (g) 𝜈 with

= 10,000 MPa and (h) 𝜈 with 𝐻 = 1000 MPa.
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meshes and small enough displacement steps. It is interesting to note
hat the power law exponent converges when the mesh is refined and
he value of 𝛥𝜀𝑥𝑥 is small enough. It is also noteworthy that the values

of the simulation parameters required for convergence are similar to
hose obtained for the convergence of large stress drop distributions.
his implies that small plastic events and large ones are closely related.

By varying the model parameters, 𝛼 varies between 1.3 and 1.6 as
shown in Fig. 12(e)–(h). No clear trend can be seen for the effect of
𝑝min on 𝛼, unlike that found for the large stress drop characteristics.
hen 𝛥𝑝min is small or large, 𝛼 is close to 1.45. For 𝐻 , values be-

ow 1000 MPa lead to 𝛼 being close to 1.55, while increasing 𝐻 to
0,000 MPa leads to a decreased value of 𝛼 = 1.4. When 𝐻 equals
000 MPa, having 𝜈 less than 0.3 leads to a value 𝛼 close to 1.55, while
t decreases to 1.3 when 𝜈 = 0.49. When 𝐻 is 10,000 MPa, varying 𝜈
oes not affect 𝛼, which remains between 1.3 and 1.4. Finally, if the
alue of the sample length is increased from 𝐿𝑟𝑒𝑓 to 2𝐿𝑟𝑒𝑓 , the value of
lpha remains around 1.4, which means that the length has no direct
ffect on 𝛼.

In the literature on the plasticity of polycrystalline materials, a
ower law exponent 𝛼 between 1 and 1.6 is typically observed for ten-
ile deformation, which is consistent with the values predicted by this

model (Csikor et al., 2007; Perchikov and Truskinovsky, 2024; Weiss
et al., 2007; Brown, 2012; Patinet et al., 2011; Dimiduk et al., 2006).
For example, Borasi et al. (2023) found an exponent 𝛼 of 1.5 for the
tensile deformation of microcast silver crystals with dogbone geometry.
This range of exponents is also consistent with those found for metals
affected by the PLC effect (Lebyodkin et al., 2000; Ananthakrishna,
2005). Although the system-sized plastic events in the model deviate
from the experimentally observed behavior due to their Gaussian na-
ture, the small-scale plastic events exhibit a phenomenology similar to
hat seen in experiments and physical models (MD, DDD, MTM). Thus,

the model demonstrates an ability to capture certain key aspects of the
underlying physics behind intermittent plasticity.

5.2. Spatiotemporal analysis of strain bursts

The spatiotemporal evolution of plastic strain increment on the 𝑂𝑥
axis is given in Fig. 13 for the reference simulation, with a zoom at the
start and at the end of the simulation. In those maps, horizontal lines
re plastic bands happening in one numerical step.

The first series of bands, from 𝑡 = 0 to 0.02, has a ‘‘pseudo-
ropagative’’ character in the sense that the 𝑛th band will always
ppear next to the (n-1)-th band. In some simulations, this propagation
oes from one end of the gauge to the other. In the current simulation,
 t

15 
a second series of ‘‘pseudo-propagative’’ bands appear at the left end of
the gauge length instead of only one, at 𝑡 = 0.021. Then, a third series
of correlated bands appear at 𝑡 = 0.04, as a continuation of the first
series. The behavior of band nucleation is phenomenologically anal-
ogous to type B PLC (Yilmaz, 2011). However, this first propagation
occurs at a stress level whose average value remains constant, which is
more similar to a Lüders phenomenon. The reason for this correlated
nucleation of bands is the overstress appearing at the boundary of each
band, the work-hardening rate 𝐻 > 0 and the absence of preliminary
defect on the gauge length (no concentration of stress prior to the
plastic deformation). When 𝐻 is less than 100 MPa, bands appear but
are confined to the area between the gauge length and the head of the
pecimen where overstress exists due to the dogbone geometry.

Once the entire tensile specimen has been plastically deformed
or the first time (𝑡 = 0.06), elements with significant local stress
oncentrations are now randomly distributed throughout the gauge
ength of the specimen. Between 𝑡 = 0.06 and 0.15, plastic bands appear
ore random and less correlated. Between 𝑡 = 0.85 and 1 (13 (c)),

bands are nucleating purely randomly on the gauge length, and no
series of pseudo-propagative bands are found. This regime of nucleation
is comparable to type C PLC (Yilmaz, 2011).

The distances between consecutive bands (distance between their
enter) have been measured during the experiment, and their distri-
ution normalized by the specimen length is shown in Fig. 13(d) in

logarithmic scale. It is found that they are distributed following a power
law with an exponent 𝛼 = 1.0, which is also typical of type C PLC (Jiang
et al., 2005).

The interest of the presented model is to spontaneously induce
acroscopic deformation bands within the specimen. These bands, with

finite width, can be interpreted as shear bands caused by an avalanche
of dislocations. Ultimately, while remaining within an isotropic elasto-
plastic framework implementable in finite element codes, the model
mimics the same phenomenology as that due to the self-organization
of dislocations among themselves in real materials, which is moreover
an emerging phenomenon in the model.

5.3. Application to structural computations

To evaluate the model under complex multiaxial conditions, sim-
lations were performed on a 3D holed plate geometry. Both the
lassical continuous plasticity (CCP) and the newly developed time-
iscontinuous plasticity (TDP) have been tested. Fig. 15 shows the
ensile curves of both simulations, the distribution of stress drops from
he TDP simulation and the cumulative plastic strain maps for the
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Fig. 13. (a) Spatiotemporal evolution of plastic strain increment during the reference simulation. 𝑋-axis is the relative position on the gauge length (0.15 is the left end of the
gauge length, 0.85 its right end). 𝑌 -axis is the normalized simulation time. (b) Zoom of (a) at the start of the simulation. (c) Zoom of (a) at the end of the simulation. (d)
Distribution of distances between consecutive bands (blue) and the corresponding modeled power law (red).
Fig. 14. (a) Tensile curves obtained from the simulations of a holed plate geometry, using either the classical continuous plasticity (black) or the time-discontinuous plasticity
(red). (b) Distribution of stress drops from the time-discontinuous simulation (black dots) and the corresponding power law (red solid line). (c) Cumulative plastic strain maps for
the continuous plasticity simulation at 𝜀1, (d) 𝜀4 and (e) 𝜀5.
CCP simulation at 3 given deformation step. The boundary conditions
consists of mixed conditions on left and right faces (only axial dis-
placement imposed), the other faces being free. Rigid body motion is
suitably fixed. Model parameters used are the same as for the reference
dogbone geometry simulation (see Table 1). Meshes were very refined
around the hole (ℎ∕𝐿 = 0.25%) and coarser around the edge of the
16 
specimen (ℎ∕𝐿 = 1%). The simulation was done in 3D and there were
4 tetrahedra in the thickness.

The CCP plate begins to yield macroscopically at 𝜀1 = 0.06%, when
the average stress within the plate becomes greater than 𝜎ys 100 MPa,
as seen on the corresponding tensile curve at the slope break. Before
𝜀1 only the area around the hole will yield plastically. After 𝜀1 the
whole plate deforms plastically. The cumulative plastic strain maps
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show that the plasticity is concentrated around the hole at 𝜀1, 𝜀4 and
𝜀5, forming the x-shape expected for this geometry as it corresponds to
the maximum values for von Mises stress.

The tensile curve of the TDP plate shows some serrations, as found
for the dogbone geometry. The effective yield stress is 125 MPa, which
is higher than the CCP tensile curve, as expected from previous analysis
on dogbone specimens. The stress drop distribution (Fig. 14(b)) is cal-
culated as indicated in Section 3.4, using the axial stress. Although this
value does not have the same meaning as before (𝜎vM is different from

xx due to the hole), it is still indicative of plastic activity. The shape
of the curves is slightly different, with a first part (below 2.5 MPa)
following a power law and the second part following a plateau instead
f a Gaussian distribution. This is very similar to the supercritical
istributions observed for metallic nanopillars smaller than 500 nm in
iameter (Zhang et al., 2020). The first part has been modeled with a
runcated power law, defined in Eq. (42). The power law exponent 𝛼

found is 1.36, which is very close to the values found in the dogbone
geometry. This suggests that the rate of nucleation of small plastic
events at the boundaries of plastic bands is also geometry, and thus
intrinsic to the time-discontinuous model.

The maps of cumulative plastic strain, plastic strain increment and
von Mises stress for the time-discontinuous simulations are displayed in
Fig. 15. As observed in continuous plasticity for this geometry, stress
concentration is found around the hole, resulting in higher cumulative
plastic strain fields above and below the hole (step 1). In contrast to
classical continuum plasticity, where the strain around the hole appears
gradually, the plastic strain in our model appears in a spatially and
temporally discontinuous manner.

The first plastic band appearing break the central symmetry of the
system (step 2). It is not traversing, with a width of 9 elements. At its
dge, von Mises stress concentration is found, which will induce new
ands, not necessarily with the same orientation.

The first traversing plastic bands appear in step 3, associated with
the first serration on the tensile curve at 𝜀3. It is not contiguous. The
average plastic strain of the band is the same as for the equivalent
dogbone simulation (≈ 5 𝛥𝑝min). The width of the band increases as
it extends away from the central hole. At the boundary of the sample it
has a width of 0.04 𝐿, which is the average width of the bands in the
corresponding dogbone simulation. The following plastic bands appear
next to the previous one due to von Mises stress concentration, with
the same orientation (step 4).

Similar to the dogbone geometry, plastic activity consists of small
plastic events (occurring in some elements, not always contiguous) and
large plastic events. The large plastic events can manifest as traversing
plastic bands or non-traversing bands around the hole. At the end of the
simulation (step 5), the entire sample is covered by plastic bands with
the same orientation of ≈ 54.74◦. This phenomenon can be understood
by the shape of the residual von Mises stress, which follows the same
irection and favors this direction.

Finally, the comparison of the cumulative plastic strain map at 𝜀5
f the CCP plate (Fig. 14(e)) and the TDP plate (Fig. 15) reveals a
ey characteristic of the model. While both plates exhibit large-scale
lastic deformation, the map for the time-discontinuous model reveals
ignificant heterogeneity in plastic strain distribution, whereas the CCP
ap shows a more homogeneous deformation away from the hole.
herefore, this demonstrates that the model successfully achieves the
ritical objective of obtaining intense localization of plastic deformation
nto discrete bands, as found in intermittent plasticity (Charpagne et al.,

2021). Unlike previous models, this result is achieved without the
introduction of probabilistic elements into the plasticity model itself,
thus eliminating the need for prior knowledge of the laws governing
plastic flow correlations (Gélébart, 2021; Marano et al., 2019).
17 
6. Conclusions

A new time-discontinuous plasticity model was developed in this
work and implemented independently in the FEniCSX (Scroggs et al.,
2022) and Zset (Besson and Foerch, 1997) solvers. By introducing a
single new parameter to conventional J2-plasticity, called the plastic
threshold 𝛥𝑝min, the model is able to capture the spatial and temporal
localization of plastic flow.

Simulations under homogeneous deformation conditions demon-
trate that plastic deformation occurs through abrupt increases in plas-

tic strain, comparable to dislocation avalanches, and these events are
always associated with sharp stress drops. The model is interpreted
through the existence of two yield surfaces: the upper surface controls
he initiation of plasticity, while the lower surface defines the stress

reached after plastic relaxation. The results of the new model under
homogeneous fields are fully understood under any triaxiality.

When the geometry of the specimen is complex and induces stress
oncentration, plastic strain bands spontaneously emerge in a random
anner, without introducing any stochasticity as an input to the model.

tochasticity of plastic events is an outcome of the model, not an
nput in contrast to many existing models in this field. Temporal
ntermittency of plastic activity and consecutive stress drops obey a
ower law for small events and a Gaussian distribution for large events.
patial intermittency of plastic activity follows a power law. The effect
f model and simulation parameters, such as 𝛥𝑝min, elastic constants,

work-hardening modulus and mesh size, have been extensively study.
otably the band widths are proportional to the length of the tensile

pecimen, and the plastic strain carried by the band is proportional
o 𝛥𝑝min. The model is homothetic in nature as it contains no internal
ength. It has been proven to be usable under any geometry, no matter
ts complexity, while remaining efficient in terms of calculation time.
ne limitation of the model is that, to obtain serrations and reliable

tatistics on stress drops and plastic events, the applied strain in the
pecimen must be at least below to 5% of 𝛥𝑝min. No spurious mesh
ependency is observed in contrast to softening models for localization.

This model developed in the von Mises plasticity framework is the
first step towards the development of a time-discontinuous model in
crystal plasticity. It is believed that this next step is necessary for the
current work to be more physically relevant and thus comparable to
experimental data. To control band size, a statistical spatial distribution
of 𝛥𝑝min across the specimen should be introduced into the model. The
statistic of 𝛥𝑝min could be calibrated using data from MD, MTM, or DDD

odels, which represent the most physically relevant approaches.
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Fig. 15. Map of cumulative plastic strain, plastic strain increment and von Mises stress at five different levels of deformation of the time-discontinuous simulation. The strain
levels are shown in Fig. 14. At stage 1, the fields are close to those obtained with classical plasticity. At stage 2 the first significant band appears. At stage 3, the first traversing
band appears. At stage 4, several traversing bands have appeared. Stage 5 is the state at the end of the simulation.
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Appendix A. Finite element solver and time discretization of the
time-discontinuous elasto-plasticity model

The time interval  = [0 𝑇 ] is divided into 𝑁 time steps. The
equation of continuum mechanics is enforced at discrete times ̄ =
{𝑡0, 𝑡1, … , 𝑡𝑁}, using the finite element method. In the following, 𝑛 will
be an integer between 0 and 𝑁 .



M. Lamari et al.

l

w

d

s

c

f

t
t

N
𝛥

b
i

t
t
a
d

a

i
v

b

International Journal of Solids and Structures 309 (2025) 113171 
Finite element solver . The domain 𝛺 is discretized into the set 
of finite elements such that 𝛺 ≈ 𝛺ℎ =

⋃

𝑒∈ 𝛺
(𝑒). The space of

inear functions over each element 𝛺(𝑒) is denoted 1 (𝛺(𝑒)). The finite
element space 𝑛+1 in which the displacement field 𝑢𝑛+1 at time 𝑡𝑛+1

ill be looked for is defined by:

𝑛+1 =
{

𝑢 ∈ 𝐶0(𝛺)|∀𝑒 ∈  , 𝑢
|𝛺(𝑒) ∈ 1 (𝛺(𝑒)) , 𝑢 = 𝑢𝑑 |𝑡=𝑡𝑛+1 over 𝜕u𝛺

}

(44)

and the associated vector space of displacement fields that vanish over
𝜕u𝛺:

0 =
{

𝑢 ∈ 𝐶0(𝛺)|∀𝑒 ∈  , 𝑢
|𝛺(𝑒) ∈ 1 (𝛺(𝑒)) , 𝑢 = 0 over 𝜕u𝛺

}

(45)

The weak form of the time-discontinuous elasto-plasticity equations
at time 𝑡𝑛+1 ∈ ̄ , discretized by the finite element method, is now
introduced. For any virtual displacement 𝑣 ∈ 0, the displacement field
𝑢𝑛+1 ∈ 𝑛+1 is searched such that the finite element stress field 𝝈𝑛+1
at time 𝑡𝑛+1 satisfies (in absence of volumetric forces and with trivial
Neumann boundary conditions):

𝑅𝑛+1
(

𝑣; 𝑢𝑛+1
)

= ∫𝛺
𝛁𝑠𝑣 ∶ 𝝈

(

𝛁𝑠𝑢𝑛+1; 𝜺
p
𝑛, 𝑝𝑛

)

𝑑 𝛺 = 0 (46)

where 𝛁𝑠𝑢𝑛+1 = 𝜺𝑛+1 is the finite element strain field at time 𝑡𝑛+1. The
dependency of the stress on the local history of the strain tensor is
introduced via the functional dependency of 𝝈 on the internal variables
𝜺p𝑛 and 𝑝𝑛 computed at time step 𝑡𝑛.

Time discretization of the constitutive relation. The time-
iscontinuous constitutive equations introduced in the previous section

need to be appropriately discretized in time. More precisely, Eqs. (13),
(14), (15) and (16) must be replaced by their time-discrete counterparts
o that 𝝈

(

𝛁𝑠𝑢𝑛+1; 𝜺
p
𝑛, 𝑝𝑛

)

can be evaluated numerically. A fully implicit
time-stepping scheme is used. Eq. (6) is enforced at time 𝑡𝑛+1:

𝝈𝑛+1 = C ∶ (𝜺𝑛+1 − 𝜺p𝑛+1) (47)

The normality rule Eq. (13) is discretized as follows:

𝜺p𝑛+1 − 𝜺p𝑛 = (𝑝𝑛+1 − 𝑝𝑛)𝒏−𝑛+1 (48)

Then, introducing the set 𝑛+1 of cumulative plastic strain increments
𝛥𝑝⋆ satisfying

𝛥𝑝⋆𝑓⋆
𝑛+1 = 0 (49)

and

𝛥𝑝⋆
⟨

𝛥𝑝min − 𝛥𝑝⋆
⟩

= 0 (50)

the maximum value in set 𝑛+1 is chosen as the solution of the
onstitutive update, i.e.

𝑝𝑛+1 = max
𝛥𝑝⋆∈𝑛+1

𝛥𝑝⋆ + 𝑝𝑛 (51)

In the previous set of equations, 𝒏−𝑛+1 denotes the normal to the yield
surface at time 𝑡𝑛+1, assuming that no plastic jump took place between
𝑡𝑛 and 𝑡𝑛+1. Mathematically, this means that 𝒏−𝑛+1 =
𝜕 𝑓
𝜕 𝜎

|

|

|𝝈𝑛+1=C∶(𝜺𝑛+1−𝜺
p
𝑛), 𝑝𝑛+1=𝑝𝑛 . Notation 𝑓⋆

𝑛+1 stands for the value of yield
unction 𝑓 at the end of the time step, i.e. 𝑓⋆

𝑛+1 = 𝑓 (C ∶ (𝜺𝑛+1 − 𝜺p𝑛 −
𝛥𝑝⋆𝒏−𝑛+1; 𝑝𝑛 + 𝛥𝑝⋆)). Knowing 𝜺𝑛+1, the equations of the time-discrete
constitutive law are solved algorithmically, and pointwise, to obtain
the values of 𝑝𝑛+1, 𝜺

p
𝑛+1, and 𝝈𝑛+1. This local algorithmic procedure (the

so-called constitutive update) will be detailed in the next section.

Global Newton solver . The Newton–Raphson solver used to solve
he nonlinear finite element system of equations at time 𝑡𝑛+1 requires
he linearization of residual (46). The Gateau-derivative of 𝑅𝑛+1 in

direction 𝛿 𝑢 ∈ 0 is the following bilinear form (linear both in 𝛿 𝑢 and
in 𝑣):

𝛿 𝑅𝑛+1
(

𝛿 𝑢, 𝑣; 𝑢𝑛+1
)

= ∫ 𝛁𝑠𝑣 ∶
𝜕𝝈𝑛+1

|

|

|

|

∶ 𝛁𝑠𝛿 𝑢 𝑑 𝛺 (52)

𝛺 𝜕𝜺𝑛+1

|𝜺𝑛+1=𝛁𝑠𝑢𝑛+1

19 
The discrete equations of time-discontinuous elasto-plasticity may
be formally solved using a Newton algorithm. At iteration 𝑘 of the

ewton procedure, we look for a finite element displacement correction
𝑢𝑛+1,𝑘+1 = 𝑢𝑛+1,𝑘+1 − 𝑢𝑛+1,𝑘 ∈ 0 that satisfies

𝛿 𝑅𝑛+1
(

𝛥𝑢𝑛+1,𝑘+1, 𝑣; 𝑢𝑛+1,𝑘
)

= −𝑅𝑛+1
(

𝑣; 𝑢𝑛+1,𝑘
)

(53)

for all virtual displacements 𝑣 ∈ 0. Newton initialization 𝑢𝑛+1,0 must
e chosen such that it satisfies the Dirichlet conditions at time 𝑡𝑛+1,
.e. 𝑢𝑛+1,0 ∈ 𝑛+1.

When solving the finite element system of equations at time 𝑡𝑛+1,
he stress field 𝝈𝑛+1 needs to be evaluated at the quadrature points of
he finite element mesh. Internal variables from 𝑡𝑛, namely 𝜺p𝑛 and 𝑝𝑛,
re stored at quadrature points, following the algorithmic procedure
etailed in Section 2.4.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.ijsolstr.2024.113171.

Data availability

The data that support the findings of this study are openly available
n the Zenodo repository titled ‘Time-discontinuous plasticity, data and
ideos’ at https://zenodo.org/records/14266823, reference number 10.

5281/zenodo.14266823. The code used for FEniCSX simulations can
e found at https://github.com/Mathias-Lamari/Time-discontinuous-

plasticity.
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