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Abstract. (English) This paper explores the electrical and thermal conductivity of complex contact
spots on the surface of a half-space. Employing an in-house Fast Boundary Element Method imple-
mentation, various complex geometries were studied. Our investigation begins with annulus con-
tact spots to assess the impact of connectedness. We then study shape effects on "multi-petal" spots
exhibiting dihedral symmetry, resembling flowers, stars, and gears. The analysis culminates with
self-affine shapes, representing a multiscale generalization of the multi-petal forms. In each case,
we introduce appropriate normalizations and develop phenomenological models. For multi-petal
shapes, our model relies on a single geometric parameter: the normalized number of "petals". This
approach inspired the form of the phenomenological model for self-affine spots, which maintains
physical consistency and relies on four geometric characteristics: standard deviation, second spec-
tral moment, Nayak parameter, and Hurst exponent. As a by product, these models enabled us to
suggest flux estimations for an infinite number of petals and the fractal limit. This study represents
an initial step into understanding the conductivity of complex contact interfaces, which commonly
occur in the contact of rough surfaces.

(Français) Cet article étudie la conductivité électrique et thermique de points de contact complexes
à la surface d’un demi-espace. Diverses géométries complexes ont été étudiées à l’aide d’une mise
en œuvre interne de la méthode des éléments de frontière rapides. Notre étude commence par
des points de contact annulaires afin d’évaluer l’impact de la connexité. Nous étudions ensuite les
effets de forme sur des points "multi-pétales" présentant une symétrie dièdre et ressemblant à des
fleurs, des étoiles et des engrenages. L’analyse culmine avec les formes auto-affines, qui représentent
une généralisation multi-échelle des formes multi-pétales. Dans chaque cas, nous introduisons
des normalisations appropriées et développons des modèles phénoménologiques. Pour les formes
multi-pétales, notre modèle repose sur un seul paramètre géométrique : le nombre normalisé de
"pétales". Cette approche a inspiré la forme du modèle phénoménologique pour les taches auto-
affines, qui maintient la cohérence physique et repose sur quatre caractéristiques géométriques :
l’écart type, le deuxième moment spectral, le paramètre de Nayak et l’exposant de Hurst. Ces
modèles nous ont permis de proposer des estimations de flux pour un nombre infini de pétales et la
limite fractale. Cette étude représente une première étape dans la compréhension de la conductivité
des interfaces de contact complexes, qui se produisent couramment dans le contact des surfaces
rugueuses.
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1. Introduction

The study of mechanical contact plays a crucial role in numerous natural and engineer-
ing systems. Some of these systems involve sliding motion, frictional resistance, lubri-
cation and wear, while others operate exclusively in normal contact. In the former case,
the interplay of mechanical deformation, chemistry, and thermal effects due to frictional
heat generation and diffusion significantly influence the overall behavior of the inter-
face [1–3]. This heat generation, coupled with intense shear deformation, can lead to
phase transitions/transformations, recrystallization, and other metallurgical or chemi-
cal effects [4–6], such as local welding/galling and abrasive or adhesive wear, depending
on oxygen influx [7, 8]. In the case of normal contact, frictional dissipation within the in-
terface remains minimal. However, the nature of contact interfaces profoundly impacts
their conductive properties for both heat and electric charge.

In both natural and engineering systems, all surfaces exhibit roughness. As a result,
at relatively light contact loads, the true contact area – formed by several intimately con-
tacting "asperities" – is smaller than the apparent contact area between solids. Apart from
other mechanical and physical properties, the contact area fraction and its morphology
also dictate energy transfer through the contact interface. Since the contact area fraction
evolves under increasing load [9–11], the interface conductivity depends on this load as
well.

Surface roughness can be described by its height distribution or its moments. In the
simplest case, surfaces can be described as Gaussian, but in practice, most surfaces in
contact exhibit an asymmetric height distribution due to wear or residual plastic defor-
mations induced during contact, particularly after the running-in process. An example of
this asymmetry is asphalt concrete, which, due to manufacturing techniques, inherently
has relatively flat plateaus and deep valleys. Although height distribution of roughness
or its moments are relevant parameters for specific applications, they do not adequately
describe mechanical contact between rough surfaces, where the curvature of contacting
"asperities" is of primary importance. Consequently, power spectral density (PSD) and
its moments represent the key parameters in describing the elastic contact of rough sur-
faces [11–14].

Aligned with PSD-based models which provide a multiscale representation of surface
features, some authors proposed fractal models of surface roughness [15–17], which, to
some extent also ensure a suitable description of real rough surfaces in the framework of
Archard’s concept of "protuberances on protuberances on protuberances" [10] however
the mechanical consistency of such models dealing with elasto-plastic contact remains
questionable.

In the study of rough surfaces in contact, one can adopt either statistical or determin-
istic approaches. The former, which includes multi-asperity models [11, 18–20] and Pers-
son’s model [13, 21], deals with probability densities and average statistical properties of
roughness. This approach is applicable to contacts with a statistically meaningful num-
ber of contacting asperities.

https://doi.org/10.5281/zenodo.10200997
https://github.com/vyastreb/HBEM
https://archive.softwareheritage.org/swh:1:dir:7edf21c11efe9437705cc2d9edfc096f8a0201b4;origin=https://github.com/vyastreb/HBEM;visit=swh:1:snp:d5ab4d2e357dd87c10738f1460e7b85e6997b4ca;anchor=swh:1:rev:1e9d38bc28780becd714a2ab015765c0b1266cd8
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These analytical and semi-analytical methods are built on certain assumptions and,
as such, have limitations when it comes to predicting the rigorously formulated con-
tact problem between rough surfaces [14, 20, 21]. On the other hand, deterministic ap-
proaches, such as multi-asperity models with interactions [22, 23, e.g.] can effectively ac-
count for a small number of contact spots, their interaction and spatial heterogeneities
in roughness. Different more advanced methods can be employed to address contact
problems within a deterministic framework. The most versatile is the finite-element
method [24–27], which can inherently handle nonlinear and heterogeneous material be-
havior and large deformations. However, it is computationally intensive and necessitates
solving mechanical equations not only on the surface but also in the bulk. Another group
of methods, including boundary-element and spectral methods, focuses exclusively on
surface interactions and, in their basic implementation, relies on space-invariant fun-
damental solutions [28–32]. Over the past few decades, these methods have been ex-
tended to tackle more complex problems involving heterogeneous and nonlinear ma-
terials [33–36].

When two conductive solids come into contact, a localized resistance emerges due to
the discontinuous nature of the actual contact area. From a mathematical standpoint, at
the macro-scale level, this phenomenon is characterized by a discontinuity in potential or
temperature at the interface of contact. At smaller scales, as discussed in the pioneering
works of Holm [37], the conductivity at contact spots exhibits a continuous change in
potential (temperature) for electrical (and thermal) contacts. In a manner analogous
to early models of mechanical contact involving rough surfaces, the true contact area
can be represented by a collection of discrete circular contact spots distributed across
the nominal contact area, and potentially extending even beyond it [38, 39]. The latter
case is possible when there is a lack of scale separation between contacting shapes and
roughness characteristics, see [23, 40].

One of numerous examples that accounts for inelastic deformations in contact is the
work of Kogut and Komvopoulos [41], where the authors used a fractal geometry with
a simple overlap (cut-off) model to establish a theoretical connection between fractal
roughness parameters and constriction resistance, assuming elasto-plastic deformation.
However, it is worth recalling here, that overlap models were shown to produce erro-
neous results and should not be used for quantitative analysis [19, 25, 42]. In the elastic
regime, Barber [43] rigorously demonstrated the equivalence between electrical/thermal
contact resistance and contact normal stiffness. Consequently, within the contact me-
chanics community, this equivalence is often employed as a justification for disregarding
a separate study of thermoelectrical diffusion equation in mechanical contact of rough
surfaces.

However, in real-life applications, electrical and thermal resistance are not merely re-
duced to contact stiffness. First, the contact-induced deformation is often accompanied
by inelastic deformations. In addition, in case of electric resistance, due to the presence
of electrically insulating or weakly conducting oxide films and surface contamination, the
conductive contact area is reduced [37], [44, Ch.1-4]. Furthermore, in the case of thermal
conductivity, additional convective and radiative contributions to heat exchange cause
the conductivity to deviate from the strict mathematical equivalence between elastic stiff-
ness and thermal/electric resistance established by Barber [43]. Therefore, in all afore-
mentioned contexts, a study of coupled thermo-/electromechanical problems is worth
investigation.

The growing demand for micro-electric devices [45] has spurred an increasing need
for electrical contact models at the microscale. The constriction resistance model re-
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mains consistent with experimental studies [46] and can be extended to various contact
shapes [47, 48] as well as to multi-spot contact configurations [49, 50]. Contact resistance
is influenced by the hardness and resistivity of the contacting solids, but is also affected
by oxidation at the contact surface [51]. However, the study of simple conductive effects
reaches its limits at small scales, where electrical resistance must incorporate the ballis-
tic description of electrons’ motion, also known as Sharvin’s resistance [52,53]. Similar re-
search has been conducted for thermal contact resistance, which has numerous applica-
tions in aerospace, automotive and electronic domains, including conductivity of bolted
joints and of thermal cooling devices [54]. This issue is experimentally represented by the
thermal contact resistance (TCR), which necessitates careful attention to the set-up pre-
cision [55] in both steady-state and transient studies [56, 57]. Experimental advancement
was accompanied by theoretical [58–61] and numerical investigations [62, 63] of thermal
resistance between rough surfaces in contact.

The primary motivation for this study stems from the observation of contact spot ge-
ometry formed between model rough surfaces (self-affine random geometry). Figure 1(a)
illustrates how individual contact spots evolve under increasing load [64], while in (b)
three separate contact spots obtained from similar simulations demonstrate high com-
plexity both in terms of connectedness and boundary shape. Even under relatively small
loads, very complex contact spots can be formed if the spectral content of the studied
roughness [12] is sufficiently rich.

However, basic models of contact resistance assume that individual contact spots
distributed over the nominal contact area possess simple shapes: elliptical or circular.
In contrast, the realistic contact shapes (Fig. 1) can be non-simply connected (having
holes) and exhibit highly complex boundaries. This complexity can be characterized by
the ratio of the square root of the area to its perimeter, also known as compactness. In this
study, we investigate the impact of connectedness and compactness of individual contact
spots on their conductive properties. Instead of studying contact spots obtained in direct
numerical simulations or rough contact, as shown in Fig. 1, we construct relatively simple
models that capture the primary features of such spots: (1) connectedness, and (2) low
compactness. The first effect is represented by an annulus shape with a varying ratio
of inner to outer radius. Compactness, as a first approximation, is modeled through a
flower-shaped spot with varying numbers of petals and their lengths. Additionally, we
explore different "multi-petal" configurations to generalize our findings. The complexity
of contact spot geometry is further addressed by modeling self-affine contact spots,
akin to multiscale petals, paraphrasing Archard with "petals on top of petals on top
of petals." The primary objectives of this study are twofold: firstly, to understand the
subtle relationship between the geometry of such complex shapes and their thermal
and electrical conductivity; and secondly, to construct a simplified model capable of
predicting this conductivity based on a set of basic geometrical characteristics.

This paper is structured as follows: Section 2 briefly introduces the numerical methods
employed in this study. The subsequent three sections study the effects of the topology
and the shape of contact spots on simple examples. Specifically, Section 3 explores the
influence of non-simple connectedness using the flux through an annular spot as a case
study. Section 4 examines the effect of compactness on conductivity of a simplified model
of a flower-shaped spot, characterized by equally spaced, uniformly sized petals, and
similar formations. Section 5 extends this examination to self-affine spots, which could be
seen as flower-shaped spots with polydispersed petals following a self-affine distribution.
The paper concludes with Section 6.
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(a) (b)

Figure 1. Simulation results of the true contact-area between self-affine random
rough surfaces taken from [64]: (a) evolution of separate contact spots under in-
creasing load, (b) snapshots of separate clusters highlighting the complexity of the
shape.

2. Methods

Electrostatics and stationary thermal conductivity are described by elliptic partial differ-
ential equation, also known as Poisson’s equation ∆U = S, where U takes a role of electro-
static potential or temperature, S is the source/sink term and the flux is given by j =−k∇U
with k being the electric or thermal conductivity. Throughout the paper we assume linear
isotropic, homogeneous and constant conductivity k, i.e. ∇k = 0, ∂k/∂U = 0.

In this study, to solve Poisson’s equation (elliptic PDE) on an isotropic, linear and
homogeneous half-space we used an in-house implementation of the boundary element
method (BEM) [31] in its fast-BEM version based on hierarchical matrices [65–68]. The
solution of the Poisson’s equation can make use of a particular solution, formulated with
a Green function G (x , y), resulting in an integral equation involving only the contact area
A where a constant potential U (x) =U0 is prescribed:

U (x) =
∫

A

jn(y)

k
G (|x−y|)dSy (1)

The Green’s function depends only on the distance between the "source" point y and
the "observation" point x, G (|x − y |) stands for the elementary solution of the Poisson’s
equation.

In this study we focus on a homogeneous Poisson’s problem ∆U = 0 with a constant
potential U0 prescribed on the contact area A and zero flux jn = 0 outside, i.e. on Ā, see
Fig. 2(a). This conductivity problem is equivalent to a mechanical contact problem of
indenting an elastic half-space by a flat indenter with the identical section A [43]. The
only difference is that the flux jn is replaced by the contact pressure p and the potential
U is replaced by the normal displacement uz , which could be readily derived from the
Boussinesq’s solution [69] as

uz (x) =
∫

A

2(1−ν2)p(y)

E
G (|x−y|)dSy (2)

Here, we assume that the half-space is made of an isotropic material linearly elastic ma-
terial with E being the Young’s modulus and ν being the Poisson’s ratio. To go beyond lin-
ear contact problems, the analogy still persists between the normal contact stiffness, the
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derivative of the contact force F to normal displacement uz , and the electrical/thermal
resistance R as soon as the contact area is identical to the conducting area A:

R = E

2k(1−ν2)

[
∂F

∂uz

]−1

. (3)

For a further discussion and a rigorous derivative of this equivalence the reader is referred
to [43].

The integral equation (Eq. 1) can be turned into a linear system to solve, involving
the construction of a fully-populated matrix. Hierarchical matrices allow to overcome
the drawbacks of the classical BEM, i.e. excessive storage and a tedious resolution of
linear system of equations with a full matrix. The open-source Python code is shared
under BSD3 license in [70] along with the details of its implementation and a short
documentation. Constant interpolation triangular elements were used. In addition, some
problems were also solved using our in-house finite element suite Z-set [71, 72] on a
cylindrical approximating of the half-space with the height and radius of the cylinder set
to be much greater than the size of the conducting spot.

To achieve accurate results using the Boundary Element Method (BEM), the problem
is addressed using two distinct meshes, each characterized by a relatively fine granularity
and differing in the number of nodes. Results are then extrapolated employing the
Richardson extrapolation technique [73], as illustrated in Fig. 2. Two meshes are built,
approximating the same contact area, but with different reference mesh size h1 > h2

(here, we take h1 = 2h2). Since the flux converges linearly with the mesh size, a simple
extrapolation would give [74]:

Q∗ ≈ 2Q(h2)−Q(h1),

where Q∗ is the exact solution and Q(hi ) is the approximate solution obtained with mesh
size hi . In a general case of two different reference mesh-sizes, we get

Q∗ ≈ h1Q(h2)−h2Q(h1)

h1 −h2
. (4)

More details and numerical experiments could be found in [75]. Since we use linear
elements, the accuracy of the geometry approximation is also dependent on the mesh
size, therefore the Richardson extrapolation is not exact. Nevertheless, for the geometrical
error, the ratio of the difference between approximate and the true area to the true area
scales as ≈ h2/(8R2) where R is the curvature radius, therefore we can neglect this error.

For the FEM, in addition to mesh-extrapolation we need to introduce a correction re-
lated to the finite size geometry, namely, the dependence on the ratio of the average spot
radius to the size of the simulated domain, which can be seen as a geometrically related
small parameter εg = a/R (see Fig. 4), where a is the characteristic conductive spot’s size
and R is the characteristic dimension of the simulated geometry. The primary, mesh-
related, small parameter is given by εh = h/a. Then, if we assume a linear dependence
on εg , we can write first terms of the expansion around the exact solution Q∗ as:

Q(εh ,εg ) =Q∗+ chεh + cg εg +o(εh ,εg ).

In this case, three simulations are needed to determine the value of Q∗ and coefficients
ch and cg in which two values of εh and of εg should be used in any combination. More
details on the mesh and geometry corrections could be found in [75].
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Figure 2. Conductivity through a contact spot on the half-space: (a) – the problem
set-up for an annulus with prescribed potential U0 in the zone A and zero flux jn = 0
outside, i.e. on Ā; (b-c) – an illustration of the Richardson extrapolation technique:
the same problem is solved on two meshes possessing different reference sizes
h1,h2, the resulting fluxes Q1 = Q(h1), Q2 = Q(h2) obtained for these meshes are
extrapolated to a limit value h → 0 assuming a linear convergence with the mesh
size h using Eq. (4).

3. Conductivity of a not simply connected spot

The total flux of a single circular spot of radius a between two half-spaces made of the
material with the same thermal/electric conductivity k was given in [76]:

Q◦ = 4kaU0, (5)

where U0 is the difference between electric potential or temperature between the spot
and an infinitely remote boundary.

It assumes stationary conductivity and perfect insulation outside the circular spot, i.e.
we ignore convective and radiative heat exchange for the thermal problem and ignore
tunnel effect or electrical breakdown for the electric problem. Notably, the total flux is
proportional to the radius of the spot. The flux distribution within the spot is axially
symmetric and thus could be expressed in polar coordinates as a function of radius r :

j ◦n(r ) = j ·n = 2U0k

π
p

a2 − r 2
, (6)

where n is the outer normal, see [76]. The flux diverges as 1/
√
ξ near the boundary where

ξ is the distance to this boundary. This solution is equivalent to the contact pressure of a
circular stamp pressed in an elastic half space [77] and to the normal stress distribution of
an external circular crack [78, p. 377]. An analytical solution for conductivity of an elliptic
spot on a half-space was later obtained in [37].

In this section, we study the total flux through an annulus spot of different internal
radius. The question is to which extent the flux is altered by the presence of small internal
holes in not simply connected spots. The internal radius is r = b, the external one r = a,
their ratio is denoted by ξ = b/a ∈ [0,1). The boundary conditions remain the same as for
the circular spot: the potential is set constant U = U0 at the annulus (b ≤ r ≤ a) the zero
flux is set elsewhere (r > a and r < b), at infinity the potential is set to U = 0. The geometry
is shown in Fig. 3 for three different values of ξ. We are mainly interested in the asymptotic
evolution of the total flux Q(ξ) in the limit of ξ¿ 1. The flux diverges at the two borders of
the annulus, however the total flux Qa should be continuous and decreasing with respect
to the relative hole radius ξ.
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As ξ → 0, the total flux should tend to Q◦, whereas for ξ → 1, the flux should vanish
Qa → 0. We could also conjecture, from a physical nature of the phenomenon, that the flux
should be a concave function of ξ with zero derivative at ξ = 0, meaning that small holes
should not affect considerably the flux. We could also conjecture that the local singularity
on the inner edge should be less pronounced than on the outer edge being regularized to
some extent by the interaction with the whole inner border especially for small size holes.

Smythe [79] was the first to solve this problem using a superposition method and pro-
vided methods to approximately evaluate the flux along with few tabulated results for the
annulus conductivity. Other authors [80–82] expanded Smythe’s work by reformulating
the problem as a triple integral or as a Fredholm integral equation of second kind. How-
ever, those solutions do not provide closed form formulas for the flux; the influence of the
effect of the hole cannot be easily deduced. Fabrikant [82] proposed an iterative method
for the resolution of the integral system. An alternative solution was obtained by Love [83]
based on constructing upper and lower limits series provided the first terms as:

QLove

Q◦
= 1− 4

3π2 ξ
3 − 8

15π2 ξ
5 − 16

27π4 ξ
6 − 92

315π2 ξ
7 − 416

675π4 ξ
8 +o(ξ8) (7)

ξ= 0.2 ξ= 0.5 ξ= 0.8

Figure 3. Geometry of the annular contact spot for various ratios of the internal to
external radii ξ= {0.2,0.5,0.8}.

We used the finite element method (FEM) to solve this problem numerically as an
axisymmetric problem. The mesh has to be refined near the annulus edges to capture
singularities. To do so, two semicircular insertions of radius re are constructed near
the singularity points (see Fig. 4). The element size at the annulus’s edge is set to hmin

such that hmin/a ¿ 1. Far from the annulus, the mesh size is set to be coarser hmax, as
hmax À hmin. Supplementing the mesh refinement near the annulus’ edge, the mesh size
is set to he , at the edge of the semicircular object setting he = 10hmin.

The finite element results for the flux distribution for several values of ξ are shown
in Fig. 5 and compared with the analytical solution for the circular spot (6). The density
of result points allows the reader to judge on the density of mesh used for this solution
(the finite element mesh is provided in Supplementary material [84]). As expected, the
normal flux diverges at both edges and the singularity at the hole (internal edge) is less
pronounced than on the outer edge: it decreases faster than the one on the outer edge.
Nakamura [47] also studied this problem, by both FEM and BEM to assess the BEM
accuracy with respect to the FEM resolution, however, the author ignored the existing
analytical solution.
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Figure 4. Mesh definition and boundary conditions for modeling of an annulus
contact spot, using the parameters ξ= 0.5, hmin/a = 0.005 and R/a = 5

Simulation results for the total flux are shown in Fig. 6 with the flux normalized by the
one of a circular spot Q◦ (see Eq. (5)). To identify numerically an asymptotic solution for
small holes, we consider a contribution from the hole with a power-law of ξ:

Qfit =Q◦
(
1−αξβ

)
, (8)

whose parameters α,β were identified by least squares method as α ≈ 0.1435 and β ≈
3.028 in the interval ξ < ξlim = 0.2, which are very close to analytical results of [82, 83],
α = 4/(3π2) ≈ 0.1351 and β = 3 (see Eq. (7)). Nakamura’s [47] results calculated by the
BEM are also displayed for comparison, however, because of the lack of Richardson
type extrapolation and convergence study, they underestimate the flux value. The Love’s
solution slightly overestimates the flux for higher values of ξ, but this could be readily
improved by including more terms in his series. In fact, all polynomial coefficients of ξ for
the series expansion of the flux function are negative and adding new terms will slightly
reduce the flux. Nevertheless, the first terms in Eq. (7) are in very good agreement with
the numerical results at least for small values of ξ.

Expectedly, we conclude that the total flux is very weakly dependent on the presence
of small holes in annulus spots because the corrective term is of order ξ3 with a small
factor ∼ 0.1. Therefore, we could conclude that not simply connected spots, at least for
holes located far from the outer boundary, conduct almost as well as simply connected
spots with the same outer boundary. In addition to this axisymmetric study, one could
conduct a similar study but with a hole placed with some eccentricity with respect to the
center. Such a study would provide an even stronger argument on the effect of such holes
in conductivity problems, however, this study is not included in the scope of the current
paper.

4. Conductivity of flower-shaped spots

To mimic complex shapes formed by contact between random rough surfaces, we first
consider a simple geometrical model which we call flower-shaped spot whose boundary
is described by the following equation in polar coordinates

r (θ) = r0 + r1 cos(nθ) = r0 (1+ξcos(nθ)) , r1 < r0 (9)
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0.0 0.2 0.4 0.6 0.8 1.0

r ′

0

1

2

3

4

5
j n

j ◦n(r ′)

ξ

0.2

0.4

0.6

0.8

Figure 5. Finite element results of the normal flux distribution for annulus spot for
different values of k, dashed line represents the normal flux of a circular spot.

where r0 is the mean radius, r1 is the half-length of petals and n is their number. So the two
positive dimensionless parameters describing the shape are ξ= r1/r0 < 1 and n. Different
flower-shaped spots are presented in the Fig. 7. Note that the average radius does not
change with the number of petals nor with their length and is equal to 〈r 〉 = r0. Circles of
radius r0 and r0(1+ξ) = r0+r1 are also shown in the figure; corresponding to the lower and
upper bounds for the resulting flux Qmin(r0) =Q◦ = 4kr0U0, Qup =Q◦(r0 + r1) = 4kr0(1+ξ)U0,

1 ≤ Q(r0,ξ,n)

Qmin
≤ 1+ξ

The particularity of these flower-shaped spots is that the perimeter increases with the
number of petals whereas the area remains constant. They are given by the following
equations

A =πr 2
0

(
1+ ξ2

2

)
, (10a)

P = r0

2π∫
0

√
1+ (nξsin(θ))2dθ, (10b)

We can notice that the integrand depends on the dimensionless parameter n′ = nξ ∈ R+

which can take arbitrary real positive values contrary to the integer number of petals
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0.0 0.2 0.4 0.6 0.8 1.0

ξ

1

0.95

0.9

0.85

0.8

Q
′ =

Q
(ξ

)/
Q

◦ ξl i m = 0.2

FEM results
Nakamura’s results

Q ′
Love eq.(7)

Q ′
f i t eq.(8)

10−2 10−1 100

ξ

10−6

10−5

10−4

10−3

10−2

10−1

1
−Q

′ =
1
−Q

(ξ
)/

Q
◦

ξl i m

Figure 6. Total flux of an annulus as a function of internal to external radius ratio
ξ: finite element results (circles), the least squares fit of an offset power-law for the
asymptotic solution Q ′

fit for ξ < 0.2 and an approximate analytical solution by [83]
QLove/Q◦. (a) – normalized total flux Q ′(k) =Q(k)/Q◦; (b) – normalized flux difference
compared to the circular flux (Q◦−Q(k))/Q◦ in log-log scale highlighting the power-
law flux evolution. Results from [47] are also shown.

n = 4,ξ= 0.1

r0

n = 4,ξ= 0.2

r0(1+ξ)

n = 7,ξ= 0.1 n = 7,ξ= 0.2

Figure 7. Examples of flower-shaped spots with ξ = {0.1,0.2} and the number of
petals n = {4,7}.

n ∈N. To characterize the shape of the flower-shaped spot, we could also use compactness
C being the ratio of the square root of the area to the perimeter:

C (n′) =
p

A

P
=p

π

√
1+ξ2/2

4E(i n′)
, (11)

where E(x) = ∫ π/2
0

√
1−x2 sin2(θ)dθ is the complete elliptic integral of the second kind and

i is imaginary unit. For small values of ξ, we could assume that the compactness depends
on n′ only. For n′ → 0, E(i n′) → π/2 and the compactness tends to the maximal value, i.e.
the compactness of a circle C →C◦ = 1/(2

p
π) ≈ 0.282.
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4.1. Conductivity results

This study was conducted using both FEM and BEM. Despite the fact that the BEM is
more appropriate for half-space approximation, the comparison of two methods with
an extrapolation in terms of the size of simulated domain employed in the FEM is also
used to assess the validity of the implemented BEM. The flower shape presents a dihedral
symmetry Dn which allows us to use only one mesh section (half-petal) with symmetric
boundary conditions imposed on the lateral sides out of 2n sections needed to construct
the full spot for the FEM. The same size reduction can be performed with the BEM using
instead the repeatability of the solution. With an increasing number of petals, the angle
of the central element near the axis of symmetry sharpens. Consequently, to prevent
any deterioration in the solution quality, the smallest simulated angular sector was
configured to be approximately π/6. This setup necessitates simulating a larger segment
than what is required by symmetry considerations only.

Simulation results of the normal flux are presented in Fig. 8 for n = {4,7,10} petals and
for ξ = 0.1. For the first two cases, the symmetry is fully exploited whereas for n = 10 the
sector’s angle is set to π/5 to preserve good mesh quality in the center. Meshes are refined
near the outer edges where the flux is singular. For n = 4 the total flux is Q ≈ 1.0084Qmin, for
n = 7 the total flux is Q ≈ 1.0150Qmin, and for n = 10 the total flux is Q ≈ 1.0209Qmin. So there
is a trend to increase the total flux with the increasing number of petals. Visually we can
also observe that the singularity in the trough (petal’s root) is weaker than the one near
the crest (petal’s extremity). The more petals we have, the weaker the flux intensity in the
trough because of the increasing interaction with the neighboring petals; a similar trend
was observed for the annular spot for small internal radii.

n = 4 n = 7 n = 10

0.62 1 2 3 4

jn

Figure 8. Simulation results for the normal flux for flower-shaped spots with n =
4,7,10 and ξ= 0.1.

In total, 97 simulations1 were carried out for ξ= 0.1 and n ∈ (1,256) as well as for ξ= 0.2
and n ∈ (1,100). The resulting total flux with respect to the normalized number of petals n′

is presented in Fig. 9. Those results are computed with Richardson extrapolation obtained
by two meshes of different density for FEM and BEM and using a similar extrapolation for
domain’s dimensions in case of FEM simulations.

The total flux, offset by the minimal flux Q −Q◦ could be normalized by the difference
between the upper and lower bounds, corresponding to circular spots of radii r0(1+ξ) and

1Without counting simulations used to employ Richardson extrapolation.
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r0, respectively, i.e. we get in the denominator Qup−Q◦ = 4kr0ξU0 = ξQ◦. This normalization
results in a universal curve for the total normalized flux for any r0 and ξ:

Q ′ = Q −Q◦
Qup −Q◦

= Q −Q◦
ξQ◦

(12)

The normalized flux evolution seems to be logarithmic, but from the physical point of
view, the flux cannot overpass Qup, therefore we shall require that the bounds 0 ≤ Q ′ ≤ 1
are respected for all n′. The resulting flux is well fitted by a two-parameter function which,
however, was found empirically:

Q ′
fit(n′) = a

(
1− 1

bn′+1

)
, 0 < a ≤ 1. (13)

This fit function is plotted in Fig. 9 along with FEM and BEM simulation results. The
coefficients determined by least squares fit are presented in Table 1. The slope at n′ = 0+ is
equal to the product ab. Even if the coefficients a and b are slightly different for different
sets, this slope remains close for all three independent fits, and roughly equals to 0.3.
Combining Eqs. (12) and (13), we obtain the following phenomenological equation for
the total flow of a flower-shaped spot:

Q =Q◦
(
1+aξ

(
1− 1

bnξ+1

))
≈Q◦

(
1+0.923ξ

(
1− 1

0.326nξ+1

))
, (14)

where Q◦ = 4kr0U0. For the infinite number of petals n of finite half-length factor ξ, there
is a limit flux given by this fit, limn′→∞(Q ′

fit) = a ≈ 0.923 and this limit is independent of ξ.
However, the validity of the suggested fit beyond the studied interval of n′ cannot be taken
for granted. An argument in favor of such a limit a < 1, i.e. that the total flux for the infinite
number of petals remains below the flux of a circular shape of radius r0(1+ξ), could me
made based on the area of the conductive spot. Indeed, the area of the full circular spot
is considerably bigger than this of the flower-shaped spot πr 2

0 (1+ ξ)2 > πr 2
0 (1+ ξ2/2). On

the other hand, the small features (infinitely thin petals) should not strongly affect the
conductivity of the spot, thus suggesting that possibly the flux should simply tend to
1... However, the current fit function could not be properly approximate the data if one
sets a = 1. The question of a rigorous definition of the limit flux for the infinite number
of petals remains open. But our initial guess, for the fitted parameters is given by the
following limit flux:

lim
nξ→∞

Q ≈Q◦(1+0.923ξ) <Qup =Q◦(1+ξ). (15)

Even though such a flower-shaped geometry, especially in the limit of infinite number
of petals, is not very relevant to contact problems between isotropic surfaces, which was
at the origin for this study, this limit value presents an interesting by-product of this study.
Among other results one can deduce a relation between n and ξ which ensures x fraction
conductivity in the interval Q◦ and Qup = (1+ξ)Q◦, with Q =Q◦ for x = 0 and Q =Q◦(1+ξ/2)
for x = 0.5:

x = a

(
1− 1

bnξ+1

)
⇔ n′ = nξ=

[
x

b(a −x)

]
⇒ nξ≈

[
x

0.326(0.923−x)

]
, (16)

Therefore, to reach the mean flux between two limits, i.e. for x = 0.5, one would need a
spot with nξ ≈ 3.61, i.e. for ξ = 0.2 one would need approximately 18 petals and for ξ = 0.1
a double of that. However, to reach 75% (x = 0.75), for ξ= 0.1, one would need a spot with
approximately 130 petals.
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Parameters Coefficients
Simulation ξ n ∈ a b ab

FEM 0.1 [1,150] 0.928 0.327 0.304
FEM 0.2 [1,100] 0.923 0.326 0.301
BEM 0.1 [1,256] 0.923 0.326 0.301

Table 1. Least squares fit for coefficients of Eq. (13) for the sets of results of flower-
shaped spots obtained using FEM and BEM simulations.

0 5 10 15 20 25

n′

0

0.2

0.4

0.6

0.8

1

Q
′ =

(Q
−Q

◦)
/(

Q
u

p
−Q

◦)

FEM, ξ= 0.1

FEM, ξ= 0.2

BEM, ξ= 0.1

0 0.5 1 1.5 2 2.5
0
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0.2

0.3

0.4

0.5

Figure 9. Simulation results for the normalized total conductivity for the flower-
shaped spot as a function of normalized petal’s parameter n′ for different ξ, three
independent least squares fit of function (13) are also plotted; the three correspond-
ing tangents at the origin are also plotted.

4.2. Alternative "multi-petal" spots

The same conductivity study could be conducted on other simple forms possessing
a single-scale petal-like structures with the same symmetry properties. Specifically we
identified the following shapes: star-shaped and gear-shaped spots shown in Fig. 10 and
Fig. 11, respectively. For "stars", each petal is made up by straight lines connecting the
roots and extremities of "petals", i.e. points with radial coordinates r0(1−ξ), r0(1+ξ). The
number of "petals" (or "rays") as previously is denoted by n, and the half-petal length
r1 is again determined by the ratio r1 = ξr0. The gear-shaped spots are made of circular
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arcs with constant r = r0(1−ξ) and r = r0(1+ξ) over equal angular segments. Contrary to
C∞ flower-shaped spots, star-shaped ones are only of class C 0 with respect to θ whereas
gear-shaped spots represent multivalued mapping, so they are not even injective even for
a single "petal" or "tooth".

n = 10,ξ= 0.1

r0

n = 20,ξ= 0.1

r0(1+ξ)

n = 10,ξ= 0.2 n = 20,ξ= 0.2

Figure 10. Examples of star-shaped spots with n ∈ {10,20} petals, and half-petal
length defined by ξ ∈ {0.1,0.2}.

n = 10,ξ= 0.1

r0

n = 20,ξ= 0.1

r0(1+ξ)

n = 10,ξ= 0.2 n = 20,ξ= 0.2

Figure 11. Examples of gear-shaped spots with n ∈ {10,20} petals, and half-petal
lenght defined by ξ ∈ {0.1,0.2}.

The area of these shapes can be readily expressed by an elementary sum of triangles
and a regular polygon for the stars, or circular sectors for the gears. Similarly, the perime-
ters are easy to find, and the resulting compactness can be also readily computed:

Pstar = 2
p

2nr0

√
1+ξ2 − (1−ξ2)cos(π/n),

Astar = nr 2
0 (1−ξ2)sin(π/n),

Cstar =
√

(1−ξ2)sin(π/n)

2
p

2n
√

1+ξ2 − (1−ξ2)cos(π/n)
.

(17)

Pgear = 2πr0(1+2n′/π),

Agear =πr 2
0 (1+ξ2),

Cgear =
√

(1+ξ2)

2
p
π(1+2n′/π)

.

(18)
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All those geometric features are summarized in appendix A and in Fig. 25. In summary,
the star-shaped area converges to

Astar
n→∞−−−−→πr 2

0 (1−ξ2),

but for all n it is always smaller than the area of gear- and flower-shaped spots:

Astar < Aflower < Agear.

The gear-shaped spots also have a bigger perimeter than the one of flower and star for a
given number of petals:

Pstar / Pflower < Pgear.

The compactness relations depend on both ξ and n. For example, for small ξ and n, the
gear is the less compact, but for big ξ, the star becomes less compact for any n.

The conductive simulations for these shapes were conducted using the fast-BEM. The
star- and gear-shaped spots present the same dihedral symmetry Dn as for the flower-
shaped, which allows us again to reduce the problem size to some extent. Example of
simulation results are presented in Fig. 12. In total, 48 simulations were performed for
both gear- and star-shaped spots, for ξ = 0.1, and n ∈ (4,256). As previously, the conduc-
tive property is assessed by computing the overall flux and helped by the Richardson ex-
trapolation. Those are again normalized according to (12), and finally presented in Fig. 13
complemented with previous results for the flower-shaped spots. The least square fitted
parameters for the same Eq. (13) are shown in Table 2.

Qualitatively, all three types of shapes show the same trend in the total flux evolution
with the number of "petals": an initial steep increase and further saturation to a constant
value. The thermal conductivity of the gears is higher than that of the flowers, while the
star-shaped configuration displays a lower conductivity. We could attribute this ordering
to the only basic geometric parameter which significantly differs for all three of them,
namely the area. Another consideration is the amount of area located closer to the
outward boundary, which of course is higher for the gear like geometry than those of
flower and star. In the limit of the infinite number of petals, the following normalized
total fluxes are obtained by extrapolation (see parameter a in Table 2):

Q ′ lim
star ≈ 0.903 < Q ′ lim

flower = 0.923 < Q ′ lim
gear = 0.978.

However, we would like to highlight once again that these values must be seen as a first
guess, and a more rigorous assessment (e.g., using an accurate asymptotic analysis) is
needed.

Parameters Coefficients
Simulation ξ n ∈ a b ab

Gear 0.1 [4,256] 0.978 0.894 0.875
Flower 0.1 [1,256] 0.923 0.326 0.301

Star 0.1 [4,256] 0.903 0.220 0.199

Table 2. Fit parameters for Eq. (13) for the total flux of different multi-petal shapes.
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Gear
n = 20, ξ = 0.1

Star
n = 20, ξ = 0.1

0.60 1 2 3 4

jn

Figure 12. BEM result of the flux through a gear- and star-shaped spots of 20 petals
and ξ= 0.1.

5. Conductivity of self-affine spots

5.1. Geometry of spots

Being inspired by shapes of contact clusters occurring in contact of random rough sur-
faces (see Fig. 1), in this section we study contact spots of model complex shapes pre-
senting some randomness. The shapes under study (see Fig. 15) could also recall cof-
fee or ink stains. To take up the Archard’s image of "protuberances on protuberances on
protuberances" [10], we constructed contact-spots in a self-affine fashion by summing-
up multiple harmonics. The goal is to imitate to some extent realistic contact spots oc-
curring for surfaces with a rich spectral content and to expand the results obtained for
single-harmonic flower-shaped spots to more complex forms.

The first step to generate a spot with self-affine boundary is to introduce a periodic
perturbation function h(θ) as a superposition of cosines which individually could be seen
as flower-shaped spots:

h(θ) =
ks∑

k=kl

ξk cos(kθ+θ0
k ), h(θ) = h(θ+2π), 〈h〉 = 0 (19a)

ξk = ξ
(

k

kl

)−(0.5+H)

. (19b)

The summed up harmonics include all integer modes from a fixed interval k ∈ (kl ,ks ) with
amplitudes ξk which decay as a strict power-law of the mode number with an exponent
involving the Hurst exponent H ∈ (0,1) ensuring self-affinity of the boundary. The ran-
domness is provided exclusively by the phases θ0

k which follow a uniform distribution on
θ0

k ∈ [−π,π). The perturbation h(θ) thus constructed follows a Gaussian distribution. The
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Figure 13. Results of the normalized flux for star-, gear- and flower-shaped spots
with respect to the normalized "petal" parameter n′ = ξn. Least squares fit of Eq. (13)
is also shown with dashed lines.

power spectral density (PSD) decays as a power law of the wavenumber with the expo-
nent −(1+2H). Richness of the spectrum could be defined by the "magnification" param-
eter ζ presenting the ratio of the highest to lowest wavenumbers ζ= ks /kl [13].

The radius of a contact spot in polar coordinates r (θ) can be readily defined with the
perturbation h(θ) as:

r (θ) = r0(1+h(θ)), (20)

naturally 〈r 〉 = r0. Nevertheless, in this construction, even imposing ξ < 1 does not guar-
antee positivity, as the factor 1+h(θ) may become negative, consequently leading to neg-
ative values for r (θ) as well. To overcome this problem, a smarter transformation should
be used, for example:

r (θ) = r0 exp(h(θ)), (21)

whose two first terms of Taylor expansion around h = 0 are equivalent to (20), but the
transformation (21) keeps the final shape well defined without self-intersections: even
for h →−∞, r → 0. However, this transformation does not preserve the mean radius at r0;
the radius will change with H , ξ, kl and ζ; this deviation will be characterized by a dimen-
sionless quantity r̄ = 〈r (θ)〉/r0. Within this formulation the parameter ξ plays a similar role
as in the study of flower-shaped spots: here, to the first order it presents the ratio between
the amplitude of the first mode to the nominal radius. The two transformations (20),(21)
are illustrated in Fig. 14 highlighting a situation, where for transformation (20) the radius
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becomes negative. Therefore, for this study we adopt the exponential transformation (21).
Several examples of complex shapes generated using the presented algorithm are shown
in Fig. 15 for ξ = 0.1 and different values of kl , ks and H but with the same set of random
phases θ0

k . As the Hurst exponent increases, the spot naturally becomes smoother.

h

(a)

θ
π−π

h =−1

r0

(b)

r0 exp(h(θ)) Eq. (21)

r0(1+h(θ)) Eq. (20)

Figure 14. Example of self-affine spot construction for ξ = 0.25, kl = 4, ks = 32 and
H = 0.5: (a) height perturbation h(θ) and (b) resulting spot radius for linear (20) and
exponential (21) transformations.

5.2. Geometrical characteristics

The initial height perturbation h follows normal distribution with zero mean and stan-
dard deviation σh , but it is not preserved by the exponential transformation (21). The ob-
tained radius follows a log-normal distribution

P (r ) = 1

rσh
p

2π
exp

(
− ln2(r )

2σ2
h

)
. (22)

Histograms shown in Fig. 16 present the probability density of the spot radius constructed
for H = 0.25, kl = 8, ks = 16 and two values of ξ = {0.05,0.1} and computed over 1000
generated spots, the least squares fitted normal and log-normal densities are also plotted.
For small values of ξ, the distribution is very close to the normal one, whereas for a higher
value, it clearly follows the log-normal one.

The standard deviation σh or the variance σ2
h of the height perturbation h(θ) can be

computed taking into account the orthogonality of cosine functions:

σ2
h = ξ2

2

ks∑
k=kl

(
k

kl

)−(1+2H)

(23)

After the transformation, the mean radius 〈r 〉 and the variance of the height distribution
σ2

r can be found as

〈r 〉 = r0 exp
(
σ2

h/2
)

, (24a)

σ2
r =

[
exp

(
σ2

h

)−1
]

exp(σ2
h), (24b)
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(a) kl = 2,ks = 8 (b) kl = 2,ks = 16 (c) kl = 2,ks = 32

(d) kl = 4,ks = 8 (e) kl = 4,ks = 16 (f) kl = 4,ks = 32

(g) H = 0.25 (h) H = 0.5 (i) H = 0.75

Figure 15. Examples of self-affine spots and their geometrical characteristics for
ξ= 0.1.
In the upper panel (a,b,c) kl = 2, ks = {8,16,32}, H = 0.25: (a) r̄ = 1.0017, σ = 0.057, (b)
r̄ = 1.0020, σ= 0.063, (c) r̄ = 1.0023, σ= 0.067;
in the middle panel (d,e,f) kl = 4, ks = {8,16,32}, H = 0.25: (d) r̄ = 1.0019, σ = 0.062, (e)
r̄ = 1.0029, σ= 0.075, (f ) r̄ = 1.0036, σ= 0.084;
in the lower panel (g,h,i) kl = 4, ks = 128, H = {0.25,0.5,0.75}: (g) r̄ = 1.0044, σ = 0.094,
(h) r̄ = 1.0028, σ= 0.074, (i) r̄ = 1.0020, σ= 0.063.

The mean value of the radius is no longer equal to r0, but it tends to 〈r 〉→ r0 asσh → 0. Note
that the variance could be expressed through the first terms of the Taylor expansion as
σ2

r ≈σ2
h+1.5σ4

h+7/6σ6
h+O(σ8

h), which demonstrates that for small values ofσh ,σr ≈σh with
a high accuracy. The comparison of the analytical expression of the variance Eq. (24b)
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Figure 16. Distribution of the radius for constructed self-affine spots for H = 0.25,
kl = 8, ks = 16 and (a) ξ= 0.05 and (b) ξ= 0.1. Least squares fit of the normal and log-
normal distributions is also presented.

with numerically evaluated standard deviation is presented in Appendix B.
The standard deviation of radius is an important geometric characteristic of the spot.

However, the standard deviation of the gradient and Laplacian of the radius as well as
Nayak parameter [12] could also have an effect on the conductivity of the spot. These
geometrical characteristics are related to spectral moments m0, m2 and m4 as follows:

m0 =σ2, (25a)

m2 = 〈|∇r |2〉 = 1

2π

∫ 2π

0

(
1

r (θ)

∂r

∂θ

)2

dθ, (25b)

m4 = 1

2π
〈|∆r |2〉 =

∫ 2π

0

(
1

r 2(θ)

∂2r

∂θ2

)2

dθ, (25c)

In the limit of infinitesimal perturbations ξ ¿ 1, we can use the following analytical
equations for the 2nd and 4th spectral moments (the 0th moment is nothing but the
variance of radius computed in (24b)):

m2 = ξ2

2

ks∑
kl

k2
(

k

kl

)−(1+2H)

, m4 = ξ4

2r 2
0

ks∑
kl

k4
(

k

kl

)−(1+2H)

(26)

The comparison of Eq. (26) with numerically evaluated moments is presented in Appen-
dix B. For flower-shaped spots, the spectral moments simplify to the following forms:

mf
0 =

r 2
1

2
= ξ2r 2

0

2
, mf

2 =
r 2

1 n2

2r 2
0

= ξ2n2

2
= n′2

2
, mf

4 =
r 2

1 n4

2r 4
0

= ξ2n4

2r 2
0

= n′2n2

2r 2
0

(27)

Since the normalized conductivity for flower-shaped spots was shown to depend exclu-
sively on n′ = ξn (see Eq. (13)), we could suggest that for a similar normalization, the main
characteristic affecting the conductivity of self-affine spots will be the standard deviation
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of the gradient
√

〈|∇r |2〉 = p
m2. In addition, it could be shown that the area of a spot is

an affine function of m0: A ≈ πr 2
0 (1+am0), and its perimeter is an affine function of

p
m2:

P ≈ 2πr (1+b
p

m2), where a,b are positive constants.

5.3. Normalization and result

In contrast to the study of flower-shaped spots, this study is no longer deterministic
and requires taking into account the randomness of the studied geometries. The total
flux for a given geometry Qi , defined as an independent event, is assumed to have a
consistent average value µ(Q) and a standard deviation σ(Q) across the same set of spot-
generative parameters. This study aims to understand the average behavior based on
these parameters. To achieve this, we compute average values for numerous realization of
spot geometries. However, this yields only an approximate value for 〈Q〉, which depends
on the number of realizations n. In practice, the standard deviation of the mean value
scales as σ(〈Q〉) = σ(Q)/

p
n. The Bienaymé-Chebyshev inequality aids in establishing a

confidence interval implying a parameter γ ∈ (0,1): the probability to find the mean value
〈Q〉 outside the interval ±σ(Q)/

p
nγ around its theoretical value µ(Q) is smaller than γ

whatever the true underlying distribution, i.e.

P

(
|µ(Q)−〈Q〉| ≥ σ(Q)p

nγ

)
≤ γ, (28)

Equivalently, the probability is (1−γ) to find the mean value in the confidence interval
±σ(Q)/

p
nγ. When there are 11 simulations, the interval of confidence spans approxi-

mately ±3σ(Q) with the probability of 99%, encapsulating the mean value 〈Q〉. In order
to reduce the interval to one standard deviation with the same accuracy, i.e.

p
nγ = 1 for

γ= 0.01 one would need to carry out n = 100 simulations which is computationally expen-
sive in view of the number of parameters to be studied. For n = 11 the probability to find
the mean value in one standard deviation interval, i.e.

√
11γ= 1 is higher than ≈9%. While

the Bienaymé-Chebyshev inequality provides a rigorous lower bound, the actual accu-
racy of our results can overpass this conservative limit. To balance the computational ef-
forts and the accuracy, the number of BEM simulation results per combination of param-
eters was set to n = 11, and this dataset was utilized to estimate the mean value and the
confidence interval obtained from the measurement of the standard deviation. As seen
in practice for this problem the standard deviation is much smaller than the approximate
mean value, therefore the confidence interval is very narrow and n = 11 seems to be a
good compromise.

An example of flux distribution obtained by fast-BEM is displayed in Fig. 17 for ξ= 0.05,
kl = 8, ks = 128 and H = 0.25. The normal flux remains singular at the edge but less
pronounced at troughs than at crests as shown previously for the flower-shaped contact
spot. Compared to the latter, it appears more difficult to construct a good mesh for
self-affine spots efficiently (fine mesh near the border and coarse far from border). The
mesh size was prescribed as a function of the edge curvature and as a function of the
shortest distance to the border. See zoom in Fig. 17, the finest used mesh reach Ne = 34340
elements. As previously, to employ the Richardson extrapolation, two meshes of different
density were used to obtain accurate results.

For the global flux analysis, the following geometrical characteristics describe suffi-
ciently well the geometry A = {〈r 〉,pm0,

p
m2,

p
m4, H }: (1) the mean radius 〈r 〉, the stan-

dard deviation of (2) radius
p

m0, (3) of its gradient
p

m2, (4) of its Laplacian
p

m4 and
(5) the Hurst exponent. The initial set of independent generative parameters is I =
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Figure 17. Example of simulation results representing the flux distribution for a
self-affine spot with ξ= 0.05, kl = 8, ks = 128 and H = 0.25.

{r0,ξ,kl ,ks , H } and contains (1’) radius r0, (2’) amplitude of perturbation ξ, (3’) lower kl

and (4’) upper ks cutoffs, and (5) the Hurst exponent H . The set A is easy to measure for
any spot, and it allows to study the effect of individual parameters on the total flux; the
generative set I is complete and dimensionless, but suffers from the fact that it could not
be easily derived for an arbitrary geometry. A sensitivity analysis will be carried out on
both sets.

The first task is to normalize the total flux Q produced by self-affine spots. There are
two main options: it can be normalized by the flux of an equivalent circular contact
spot (a) of the same mean radius Q◦ = 4kU0〈r 〉 or (b) of the same area. The first option
was selected since the mean radius also enters the set of parameters, moreover Q◦
is equivalent to the definition of Qmin used for the flower-shaped contact spot. The
normalized total flux is thus defined by

Q ′ = Q

Q◦
= Q

4kU0〈r 〉
(29)

Therefore, since the problem does not have an internal length, we can exclude the mean
radius 〈r 〉 from the set of parameters defining the total flux Q ′ and consider two sets of
dimensionless parameters:

• Geometrical set of parameters A ′ := {
p

m0/〈r 〉,m2,〈r 〉pm4, H }
• Generative set of parameters I ′ = {ξ,kl ,ks , H }

By analogy with the maximal total flux Qup defined for flower-shaped spots, we could
define an equivalent upper limit for self-affine spots. It is not a good idea to define it as
the maximal radius of the self-affine spot as it could tend to infinity for very high number
of modes. However, the variance of the flower-shaped spot mf

0, Eq. (27), provides us with
a hint getting back the half-petal length r1 in another way, i.e. using this equation we
can express it as r1 = (2mf

0)1/2; therefore, the limit characteristic radius could be expressed
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as 〈r 〉 +p
2m0. Thus, the difference between two flows used for normalization takes the

following form:
Qup −Q◦ = 4kU0

√
2m0

Following the same renormalization between zero and one as was used for the flower-
shaped spots, we could define the renormalized flux as:

Q ′′ = Q −Q◦
Qup −Q◦

= Q

4kU0
p

2m0
− 〈r 〉p

2m0
(30)
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Figure 18. Normalized flux (29) of self-affine spots: for the following generative pa-
rameters I ′: ξ= 0.05, kl = {2,4,8}, ζ= {4,8,16,32} and H = {0.25,0.3,0.4,0.5,0.6,0.7,0.75},
note that ks = ζkl . The mean normalized flux is plotted with a marker and shaded
around according to the confidence interval half-width of ±1.35σ defined for γ= 0.05
(namely with a rate of confidence of 95%).

The total flux normalized according to Eq. (29) is presented in Fig.18 for all simulated
self-affine spots. These spots are constructed by changing the lower cutoff kl = {2,4,8}
and for four values of the upper cutoff ks = ζkl with the magnification ζ = {4,8,16,32}.
The Hurst parameter H takes the values H = {0.25,0.3,0.4,0.5,0.6,0.7,0.75}). The colors are
used to distinguish the 3 sets of the results according to different kl . In each color set,
the results are distinguished by their marker style according to values of magnification
ζ, moreover, the higher the ζ, the darker the color. Along every result-curve the Hurst
exponent H changes as shown by the arrow: the smaller the H , the higher the flux. The
curves are entwined together, but they seem to follow the same trend. Plotting the data
with respect to geometrical parameters A ′ offers a better representation than the use
of the generative set of parameters I ′. The variation in slope seems to be controlled by
parameter ζ= ks /kl : increasing ζ increases the average slope with respect to

p
m0/〈r 〉 and

decreases the average slope with respect to
p

m2 and 〈r 〉pm4.
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Figure 19. Renormalized flux, Eq. (30) of self-affine spots: for ξ = 0.05, kl = {2,4,8},
ζ= {4,8,16,32}, H = {0.25,0.3,0.4,0.5,0.6,0.7,0.75}. The mean normalized flux is plotted
with a marker and shaded around according to the confidence interval half-width
of ±1.35σ and of 95% of accuracy; vertical lines and numbers correspond to spots
shown in Fig. 20.

The results of the renormalized flux Eq.(30) with respect to
p

m2 and 〈r 〉pm4 are pre-
sented in Fig. 19. However, the role of the fourth moment in the form 〈r 〉pm4 seems to
be strongly correlated with

p
m2 and does not bring much additional information. The

lack of simple dependency of the normalized flux with respect to geometrical character-
istics pushes us to suggest an alternative normalization. The shown results seem to de-
pend strongly on kl parameter. By exploring a wider spreading of

p
m2 for different kl , we

hope to easier identify their influence, which is the objective of the following sections.
To provide a visual geometrical interpretation in the flux variation (see Fig. 20) related

to geometrical characteristics of self-affine spots, we present particular shapes along with
the values of corresponding geometrical characteristics and of the total flux in Table 3,
the location of these particular spots is also highlighted in Fig. 19. The pairs {S1,S2},
{S3,S4} and {S5,S6} have close values of

p
m2. The difference between the flux of spots S5

and S6 highlights the fact that the flux does not depend only on the second moment.
Nevertheless, this could be seen as a second order effect compared to that of

p
m2. Spots

S7 and S8 are among the "roughest" spots and possess the highest flux.

5.4. Results with renormalized standard deviation

As presented in Figs. 18 and 19, the results are clustered with respect to kl . To have more
control on geometrical characteristics, we renormalize the generative function h(θ) in
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S1
kl = 2, ks = 32

H = 0.25√
m0/〈r〉 = 0.0664

S2
kl = 4, ks = 32

H = 0.60√
m0/〈r〉 = 0.0664

S3
kl = 2, ks = 64

H = 0.30√
m0/〈r〉 = 0.0657

S4
kl = 4, ks = 128

H = 0.70√
m0/〈r〉 = 0.0645

S5
kl = 4, ks = 128

H = 0.40√
m0/〈r〉 = 0.08

S6
kl = 8, ks = 128

H = 0.75√
m0/〈r〉 = 0.0852

S7
kl = 8, ks = 128

H = 0.25√
m0/〈r〉 = 0.1262

S8
kl = 8, ks = 256

H = 0.25√
m0/〈r〉 = 0.1317

Figure 20. Examples of self-affine spots with corresponding generative character-
istics; the corresponding data points are highlighted in Fig. 19, the resulting flux and
geometrical characteristics can be found in Table 3.

Parameters A ′ Parameters I ′

Spot # Q ′′ p
m0/〈r 〉 p

m2
p

m4〈r 〉 ξ kl ks H
S1 0.151 0.0664 0.658 14 0.05 2 32 0.25
S2 0.172 0.0664 0.666 12.7 0.05 4 32 0.6
S3 0.173 0.0657 0.958 39.8 0.05 2 64 0.3
S4 0.184 0.0645 0.972 63.8 0.05 4 128 0.7
S5 0.317 0.0800 2.06 163 0.05 4 128 0.4
S6 0.380 0.0852 1.97 130 0.05 8 128 0.75
S7 0.644 0.126 5.12 446 0.05 8 128 0.25
S8 0.749 0.182 8.77 1493 0.05 8 256 0.25

Table 3. Parameters for spots shown in Fig. 20 and the resulting total flux.

order to prescribe its dimensionless standard deviation σh =p
m0,h (see Eq. (23)):

h(θ) =
√

2m0,h

s

ks∑
k=kl

ξk cos(kθ+θ0
k ), s =

ks∑
k=kl

ξ2
k (31)

with ξk defined by Eq. (19b). The exponential transformation from h(θ) to radius
r (θ) (21) remains intact. Then, for the normalized generative parameters we have: I ′′ =
{
p

m0,h ,kl ,ks , H } and for the geometrical ones we still have A ′. The main goal for such a



Paul Beguin and Vladislav A. Yastrebov 27

choice is to decorrelate
p

m0/〈r 〉 and
p

m2 and thus to level down m0 for kl = 8, and to level
it up for kl = 2. Note also that

p
m0/〈r 〉 ≈p

m0,h for small values of the latter, see (24b) and
its Taylor expansion.

The results of this set of simulations for the renormalized flux (30) are presented in
Fig. 21 with respect to the standard deviation of the radius gradient

p
m2; lower cutoffs

kl = 2 (orange circles and red squares) and kl = 8 (green crosses and cyan triangles) were
used. In addition, different colors correspond to different magnifications: ζ = 4 for red
squares and cyan triangles, ζ= 8 for orange circles and green crosses. The Hurst exponent
takes three values H = {0.25,0.50,0.75}. For the same value of pm0,h ≈ p

m0/〈r 〉, thanks to
the variation of the Hurst exponent, the value of

p
m2 varies within a certain interval, such

data points are connected by a line. Every set of such lines (of the same shade) align along
their master curve. Such results demonstrate that even though the standard deviationp

m0/〈r 〉 controls the thermal flux to a large extent, the standard deviation of the gradientp
m2 also influences the result. This conclusion is possible since

p
m2 does not enter the

flux normalization (30). The flux increases with respect to both
p

m0/〈r 〉 and
p

m2 as well
as with respect to 〈r 〉pm4 because of the strong correlation of the latter with the second
moment. For an equivalent

p
m2, the flux is higher for spots with a lower magnification ζ.

To provide a geometrical meaning to these results, coupled pairs of self-affine spots
{S1,S2}, {S3,S4}, {S5,S6} with different spectral content but similar value of m2 are displayed
in Fig. 22 and are highlighted in Fig. 21 and in Table 4. Remarkably, the three foremost
right lines (d) in the figure seem to continue each other. The spots {S5,S6} well illustrate
this link: they have the same number of modes, but different H and m0,h .

Parameters A ′ Parameters I ′′

Spot # Q ′′ p
m0/〈r 〉 p

m2
p

m4〈r 〉 p
m0,h kl ks H

S1 0.189 0.100 0.507 5.10 0.100 2 16 0.5
S2 0.213 0.143 0.515 2.84 0.141 2 8 0.5
S3 0.510 0.0995 1.56 33.6 0.100 8 32 0.5
S4 0.476 0.0705 1.56 61.9 0.005 8 64 0.5
S5 0.665 0.0997 2.62 114 0.100 8 64 0.25
S6 0.666 0.141 2.61 94.1 0.141 8 64 0.75

Table 4. Parameters for spots shown in Fig. 22 and the resulting total flux. The spots
are ordered according to the increasing value of

p
m0.

Finally, we would like to point out that (1) the influence of
p

m0 is ultimately handled
by normalization; (2) the results are rather well clustered along a simple trend line in
terms of m2, (3) but clearly there is a dependence on ζ. At the same time, the shape of
the trend is very similar to what was observed for multi-petal spots and we recall thatp

m2 is analogous parameter to n′ used there. Qualitatively the slope of the normalized
total flux with respect to

p
m2 decreases suggesting an ultimate saturation as in multi-

petal shapes (see Figs. 9 and 13). For the extra generative parameter ζ ∈I ′′ to which some
dependence is observed, it should be expressed through spectral moments which could
be easily measured for arbitrary shape, it will be handled in the following subsection.

5.5. Conductivity model

This study aims to quantify the flux transmitted through a spot of complex shape. While
the numerical results encompass a broad parametric space, they are not readily compre-
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Figure 21. Results for the renormalized total flux Eq. (30) of self-affine spots with
respect to standard deviation of the radius gradient

p
m2 obtained with controlled

standard deviation p
m0,h ≈p

m0/〈r 〉.

hensible in their full scope and pose challenges for generalization. We thus make an at-
tempt to construct a general phenomenological model relying on geometrical character-
istics and inspired from the model used for flower-shaped spots.

5.5.1. Covariance matrix

The first simple step is the construction of a covariance Ci j matrix of the normalized
flux and all available normalized parameters x̃i :

Ci j = 〈x̃i x̃ j 〉, x̃i = xi −〈xi 〉
σ(xi )

, (32)

where, as previously, 〈xi 〉 denotes the average value, and σ(xi ) denotes its standard
deviation. The covariance matrix constructed based on all available simulation data is
provided in Table 5. There is a strong correlation between Q̃ ′, Q̃ ′′ and parameters k̃l ,

˜p
m0/〈r 〉, ˜p

m2 and ˜p
m4〈r 〉. However, because of the strong correlation, the effect of the

moment m4 is hard to isolate from the effect of m2. Very small correlation of the flux is
found with ξ̃, H̃ and α̃, where α is Nayak parameter (see next paragraph); slightly more
correlation exists with ζ̃. According to the covariance matrix, the Hurst exponent seems
to be negligible, which is surprising in the light of our previous results. In conclusion, we
could confirm that the covariance matrix and eventual Principal Component Analysis,
which access only first order correlations, present too coarse tools to determine subtle
non-linear correlations. Finally, since generative parameters I are strongly linked to
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S1
kl = 2, ks = 16

H = 0.50√
m0/〈r〉 = 0.0315

S2
kl = 2, ks = 8

H = 0.50√
m0/〈r〉 = 0.0446

S3
kl = 8, ks = 32

H = 0.50√
m0/〈r〉 = 0.1

S4
kl = 8, ks = 64

H = 0.50√
m0/〈r〉 = 0.071

S5
kl = 8, ks = 64

H = 0.25√
m0/〈r〉 = 0.101

S6
kl = 8, ks = 64

H = 0.75√
m0/〈r〉 = 0.142

Figure 22. Comparison of pairs of self-affine spots for the same
p

m2 and for
different values of

p
m0/〈r 〉. To simplify the reading of the parameters, they are

equivalently displayed in Table 4.

Q̃ ′ Q̃ ′′ ξ̃ k̃l ζ̃ H̃ ˜p
m0/〈r 〉 ˜p

m2
˜p

m4〈r 〉 α̃

Q̃ ′ 1 0.9 0.1 0.7 0.3 -0.2 0.7 0.9 0.7 0.06
Q̃ ′′ - 1 -0.04 0.8 0.4 -0.2 0.7 0.9 0.7 0.1
ξ̃ - - 1 -0.2 -0.2 0.1 0.7 -0.06 -0.07 -0.08
k̃l - - - 1 0.06 0.0 0.4 0.7 0.4 -0.03
ζ̃ - - - - 1 0.0 0.06 0.5 0.5 0.9
H̃ - - - - - 1 -0.2 -0.2 0.3 0.2
˜p

m0/〈r 〉 - - - - - - 1 0.6 0.4 -0.05
˜p
m2 - - - - - - - 1 0.9 0.2
˜p

m4〈r 〉 - - - - - - - - 1 0.3
α̃ - - - - - - - - - 1

Table 5. Covariance matrix of normalized flux and all normalized parameters ac-
cording to Eq. (32).

the method of spot generation, in constructing our model we will focus exclusively on
geometrical parameters A which could be measured for an arbitrary shape.
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5.5.2. Phenomenological model

Analyzing the obtained results, we noticed a weak logarithmic dependence of the to-
tal normalized flux on the magnification parameter ζ = ks /kl . A relatively simple phe-
nomenological model including this parameter could be constructed, but since this pa-
rameter is generative, it is of no help for a general case. Nevertheless, it is clear that the
magnification ζ is intimately related to another geometrical parameter, known as Nayak
parameter [12, 14] α = m0m4/m2

2 (see covariance matrix in Table 5). Remark that from
Eqs. (27) for the flower-shaped spot, the Nayak parameter is simply 1 so, consistently it
does not enter the phenomenological equation for the conductivity of such simple forms
Eq. (13). A rigorous link between the generative parameter ζ and the geometrical parame-
ter α could be provided, see Appendix B. The concrete form of this link was not used, but
we could notice that another geometrical characteristic, namely the Hurst exponent H is
involved, regardless the results of the covariance analysis. So, the ultimate set of geomet-
rical dimensionless parameters is chosen to be:

A f = {p
m0/〈r 〉,pm2, H ,α

}≡ {
σ/〈r 〉,

√
〈(∇r )2〉, H ,α

}
(33)

The fourth moment m4 does not enter explicitly in the set of parameters, only through the
Nayak parameterα similarly to models of rough contact [14,19,20]. Finally, we suggest the
following form for the phenomenological model:

Q ′′ = a

[
1− 1

b
p

m2 +1

]
(1+ cH)

{
1+ d

eα f +1

}
(34)

with the core term in square brackets which is equivalent to the phenomenological
law obtained for multi-petal spots, see Eq. (13). In addition, the effects of H and α

enter the equation through the product of linear and non-linear functions, respectively
(normal and curly brackets). The former is the increasing function of H and the latter
is a decreasing function of α. Both terms provide a slight factor adjustment: in the
interval (1,1+ c) for H ∈ (0,1), and in the interval (1+d/(1+ e),1) for α ∈ (1,∞). Due to a
weak dependence on the Nayak parameter, we made an attempt to integrate it through
a logarithmic dependence, like in [14], but the constructed model could not fulfil the
physical consistency, i.e. to always ensure positive normalized flux Q ′′ which increases
monotonically for increasing α and ζ (see Appendix C). This physical consistency could
be formulated as an inequality for the exponent parameter f :

f ≥ 1−H

2H
.

The issue with this bound is that it diverges for H → 0. Therefore, we deliberately fixed the
minimal value of the Hurst exponent that we took into consideration H ≥ 0.25, providing
the following condition for the exponent f ≥ 1.5. A further study should be carried out
to formulate a physically consistent phenomenological model for the flux for spots with
lower values of the Hurst exponent.

Combining Eqs. (34) and (30), the final equation for the flux is obtained as:

Q =Q◦
(
1+a

p
2m0

〈r 〉
[

1− 1

b
p

m2 +1

]
(1+ cH)

{
1+ d

eα f +1

})
(35)

The coefficients are found by the least square fit of all simulation results, see Table 6.
Results of the fitting law are shown in Fig. 23 separately for two sets of simulation data: in
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Fig. 23(a) for the set of contact spots parametrized by Eq. (19a), and in Fig. 23(b) for those
defined by Eq. (31). A relative error could be defined as:

E = 1

N

N∑
i=1

|Qi −Qfit
i |

Qi
, (36)

and for the fit coefficients the error reduces to E = 4.3 %. The Pearson’s correlation factor
for the set of identified parameters is equal to ρ = 0.9976.

Parameter a b c d e f
Value 0.968 0.255 0.0867 4.38 5.49 1.50

Table 6. Parameters of the phenomenological model (34),(35) optimized through
least square fit and resulting in relative error E = 4.3 % and Pearson’s correlation
factor ρ = 0.9976.

The high concentration of data for low
p

m2 might have introduced biases during the
fitting process. Nonetheless, the obtained model captures well all the trends observed in
our simulation results, notably, it represents well the flux of the roughest contact spots
with highest values of

p
m2 and α. In summary, the obtained model could be seen as

a generalization of the initial model formulated for multi-petal shapes (flower-, star-
and gear-like). The ultimate model integrates the combined effects not only of standard
deviation σ =

√
〈(r −〈r 〉)2〉 = p

m0 and
√
〈(∇r )2〉 = p

m2 but also of more subtle shape
parameters such as the Nayak parameter α and the Hurst exponent H , which are related
to bandwidth length and fractal dimension, respectively.

As a by product, the form of the phenomenological model (35) permits us to access
the fractal limit of the self-affine spots, when the magnification ζ = ks /kl → ∞, then a
very simple form for the limit flux could be obtained, depending only on the standard
deviation of the spot and its Hurst exponent:

lim
ζ→∞

(Q) =Q◦
(
1+a

p
2m0

〈r 〉 (1+ cH)

)
= 4kU0

(
〈r 〉+a

√
2m0 (1+ cH)

)
. (37)

As a first order approximation, one could use the following value 4kU0
(〈r 〉+p

2m0
)

which
remains relatively accurate due to the factor a(1+ cH) having minimal variation, remain-
ing within the range (0.968,1.052). In general, this fractal limit remains speculative and
could be seen as our conjecture as for the case of multi-petal shapes.

6. Conclusion

In establishing the bounds on the conductivity of rough contacts [43], Barber argued
that "its greatest potential probably lies in establishing the maximum effect of neglected
microscales of roughness in a solution of the contact problem for bodies with multiscale
or fractal roughness." In our contribution, we focus on these "microscales" and make an
attempt to assess their quantitative effect on the conductivity. If we repeat after Samuel
Karlin that "the purpose of models is not to fit the data but to sharpen the questions", this
study indeed permitted to sharpen few of them.



32 Paul Beguin and Vladislav A. Yastrebov

0 2 4 6 8√
m2

0.0

0.2

0.4

0.6

0.8

1.0
Q
′′

2

Filled

Filled

Filled

Filled

4

Filled

Filled

Filled

Filled

8

Filled

Filled

Filled

Filled

kl/ζ

4

8

16

32

2 4 8 klζ
4

8

16

32

1 10 20

α

(1)

0 1 2 3 4√
m2

0.0

0.2

0.4

0.6

0.8

1.0

Q
′′

(a)
Filled
Filled
Filled
Filled
Filled

(b)
Filled
Filled
Filled
Filled
Filled

(c)
Filled
Filled
Filled
Filled
Filled

(d)
Filled
Filled
Filled
Filled
Filled

m0,h
0.001
0.002
0.005
0.01
0.02

(a) (b) (c) (d) m0,h

0.001
0.002
0.005
0.01
0.02

1 2 3 4 5

α

(2)

Figure 23. Simulation results for the normalized flux through self-affine spots
(color markers and interpolation lines) and phenomenological prediction (smaller
black markers of the same type). Upper row: initial set of data (1), lower raw: data
with controlled standard deviation (2). The letters in the second series refer to those
defined Fig. 21.
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6.1. Flower-shaped spots and other simple forms

For simple multi-petal shapes: flower-, star- and gear-like conductive spots we could ob-
tain the following results. In the limit of the infinite number of petals, rays, and teeth, the
conductivity seems to converge to different finite limits. The bigger the area, the higher
its limit, therefore the gear-like shapes have the highest and star-like shapes the low-
est conductivity. We determined these limits by an extrapolation of a constructed phe-
nomenological model, and these results should be interpreted as a first guess. Hence, the
first question is whether a conductivity of such spots could be determined analytically in
the limit of infinite number of petals, rays or teeth? Expectedly, these limits are bounded
between the conductivity of a circle with the average radius r0 and a circle with the ra-
dius equal to the maximal extent of these spots r0(1+ξ). On the other hand, in this limit,
the boundary of the conducting spot could be seen as fuzzy, with the same geometrical
bounds but different "fuzziness" types, which surprisingly significantly affects the limit.
The physical and mathematical limits could be different here because of radiative and
eventually convective heat exchanges or because of tunneling effects. The physical con-
ductivity should probably hit the upper limit Qup defined by the conductivity of a circular
spot of radius r0(1+ξ).

6.2. Conductivity of self-affine spots

In terms of conductivity of self-affine random spots, based on numerous simulation re-
sults and being inspired by the phenomenological model constructed for a flower-shaped
spot, we suggested a phenomenological model including four parameters: (1) mean ra-
dius, (2) its standard deviation (or the square root of the zeroth spectral moment), (3)
its gradient’s standard deviation (or the square root of the second spectral moment), (4)
its Hurst exponent and (5) its Nayak parameter. The model is applicable in a relatively
large interval of parameters and properly describes the change in flux with these geomet-
rical parameters. It is worth noting that the model shows an interplay between the sec-
ond spectral moment and a specific combination of the Hurst exponent and the Nayak
parameter. The conductivity increases with the former and decreases with the latter. In
the generative model employed in this study, under increasing magnification, the second
spectral moment and the Nayak parameter increase in such a way that the flux is always
a monotonically increasing function (by construction). Nonetheless, it is conceivable to
design shapes where these two parameters are independently controlled. Consequently,
the second question arises: could an increase in the Nayak parameter actually lead to a re-
duction in flux in practical scenarios? An affirmative response would intriguingly imply
the existence of an optimal Nayak parameter (linked to an ideal shape) that maximizes
conductivity. However, such a scenario seems rather unlikely.

Similar to our analysis of simple multi-petal shapes, the phenomenological model
enabled us to determine the ultimate fractal limit for the conductivity of self-affine
shapes as the magnification ζ approaches infinity. This limit depends solely on the mean
radius, standard deviation, and only weakly on the Hurst exponent. However, as in our
earlier findings, this identified limit should be regarded as a preliminary estimate. The
mathematical question of the conductivity of self-affine shapes in the fractal limit remains
open for further exploration. From a physical perspective, similarly to observations with
flower-shaped spots, the diffusive nature of the boundary could provide a more practical
approach to determining this limit.



34 Paul Beguin and Vladislav A. Yastrebov

6.3. Contact spots between rough surfaces

Concerning the conductivity of contact spots formed between randomly rough surfaces
in contact, we can highlight several pertinent findings. The non-simple connectedness
of these spots, characterized by non-contact areas surrounded by contact ones, does not
appear to significantly affect overall conductivity. However, the complexity of their shapes
undoubtedly influences this conductivity. Drawing from our analyses of relatively simpler
cases, a set of parameters proves effective for estimating conductivity using the developed
phenomenological models (Eqs. (34) and (35)). These parameters include (1) average
radius, (2) standard deviation, (3) second spectral moment, (4) Hurst exponent, and (5)
Nayak’s parameter of the outer contour. But this model should be applied to realistic
contact spots with caution. In most cases, such spots cannot be parametrized through
a function in polar coordinates r (θ) and, in general, polar coordinates do not make
much sense for complex spots (see Fig. 1). Instead, a more general parametrization using
convective coordinates defined along the outer boundary is needed. In this study, by
limiting ourselves to relatively simple geometrical models, we left more realistic contact
shapes for future research. As a preliminary simulation for this research, we present
a conductivity analysis of Koch snowflakes [85], with conductivity results for several
initial iterations shown in Fig. 24. Qualitatively, these results align with the observed
conductivity saturation at the fractal limit, a natural outcome for the physical problem
of conduction, for more details see [75].
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Figure 24. Normalized flux at Koch snowflake spots at several first fractal iterations
and the evolution of the total flux.
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Characteristics Flower Star Gear

Area A πr 2
0

(
1+ ξ2

2

)
nr 2

0 (1−ξ2)sin(π/n) πr 2
0 (1+ξ2)

Perim. P r0E(i n′) 2
p

2nr0

√
1+ξ2 − (1−ξ2)cos(π/n) 2πr0(1+2n′/π)

Comp. C =
p

A
P

p
π

√
1+ξ2/2

4E(i n′)

√
(1−ξ2)sin(π/n)

2
p

2n
√

1+ξ2 − (1−ξ2)cos(π/n)

√
(1+ξ2)

2
p
π(1+2n′/π)

Table 7. Geometrical characteristics (area, perimeter and compactness) for multi-

petal shapes: flower, star and gear; E(i n′) = E(i nξ) =
π/2∫
0

√
1+ (nξsin(θ))2dθ is the

complete elliptic integral of the second kind and i is the imaginary unit.
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Appendix A. Geometrical characteristics of flower-, star- and gear-like shapes

Geometrical characteristics (perimeter, area and compactness) are summarized in Ta-
ble 7 and Fig. 25 for flower-, star- and gear-like spots. We remind that the mean radius is
denoted by r0, and half-length of petals (stars or teeth) is equal to r0ξ.

Appendix B. Geometrical characteristics of self-affine spots

In Fig. 26, the analytical form for the standard deviation of self-affine spots σs Eq.(24)
is compared with the one evaluated over 1000 generated spots for each combination of
generative parameters: ξ = 0.05, kl ∈ {2,4,8,16,32,64,126}, ζ ∈ {4,8,16,32} and H ∈ [0.2,0.8].
These results are quite sensitive to kl , but the maximal relative error is 0.05% for kl = 32
and ζ= 8.

The second m2 and the forth m4 moments have been computed for the same set of
generative parameters over the same 1000 spots. These moments could be computed in
three different ways. First, the discretized contour geometry could be used to evaluate
these moments mD

p using Eq. (25). The discretization consists of splitting the contour
in N = max{10000,100ks } straight segments with dθ = 2π/N and evaluation gradient and
Laplacian as

∇ri = 2(ri+1 − ri )

(ri+1 + ri )dθ
, ∆ri = 4(ri+1 −2ri + ri−1)

(ri+1 +2ri + ri−1)2dθ2 , (38)

where ri = r (i dθ), i = 1, N . This method was used throughout the paper. Second, the mo-
ments could be approximated by discrete sums of all mode contributions as in Eq. (26):

mS
p = (r0ξ)2

2

ks∑
kl

kp
(

k

kl

)−(1+2H)

. (39)
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Figure 25. Perimeter, area and compactness for different "multi-petal" shapes for
ξ= {0.1,0.9}; all quantities are normalized by the corresponding ones of the circle of
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This method is however valid only for relatively small values of ξ because it ignores the
exponential transformation (21). Third, for sufficiently large values of kl , these discrete
sums could be turned into integrals with wavenumber k becoming a continuum variable
of integration:

mC
p = 1

2

∫ ζkl

kl

(r (k))2 kp dk, (40)

where r (k) = ξr0(k/kl )−H−0.5. Analytical formulas derive from the development for the
moments mC

0 , mC
2 and mC

4 , as follows.

mC
0 =− (r0ξ)2kl

4H

(
ζ−2H −1

)
, mC

2 =− (r0ξ)2k3
l

2(2−2H)

(
ζ2−2H −1

)
, mC

4 =− (r0ξ)2k5
l

2(4−2H)

(
ζ4−2H −1

)
.

(41)
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For high values of kl the discrete spectrum is closer to a continuous one, and thus
the spectral moments can be deduced from Eq. (26) as detailed by Nayak [12]. These
analytical values are compared with the numerically evaluated ones in Fig.27 and Fig.28.
The maximum deviation is of only 0.7 % for the m2 for parameters kl = 2,ζ= 4 and H = 0.2.
However, for m4 an average discrepancy of 10 % is observed and could raise to as much
as 27 % in certain instances. Nevertheless, in all results presented in the paper only actual
values of the moments and of their combinations were used.

The Nayak’s parameter is determined using the moments m0, m2 and m4,α= m0m4/m2
2.

The three models mentioned above could be used to compute the Nayak parameter
as αD , αS and αC , respectively. The average values computed over a set of 1000 spots
are compared in Fig 29. This analysis demonstrates that a continuum model could be
successfully used in practical applications. In the limit of high magnification ζ, the second
moment and the Nayak parameter scale as mC

2 ∼ ζ2−2H and αC ∼ ζ2H .
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Figure 26. Results of standard deviation by spectral and sample analysis, with
kl = {2,4,8,16,32,64,128} in both figures: (a) ζ = {4,8,16,32} and H = 0.2; (b) H =
{0.2,0.4,0.6,0.8} and ζ= 4.

Appendix C. Physical consistency of the phenomenological model

The phenomenological model of flux Eqs. (34),(35) exhibits an increasing behavior with
respect of m2, but decreases with α. Nevertheless, from general physical considerations,
we conjecture that the flux should be a monotonically non-decreasing function of the
magnification ζ. So, we require that the derivative of flux Q with respect to magnification
ζ remains non-negative:

∂Q

∂ζ
= ∂Q

∂m2

∂m2

∂ζ
+ ∂Q

∂α

∂α

∂ζ
≥ 0 (42)

The terms ∂Q/∂m2 and ∂Q/∂α could be redily derived from Eq. (35).
∂Q

∂m2
= a

b

2
p

m2(b
p

m2 +1)2 (1+ cH)

(
1+ d

eα f +1

)
(43a)

∂Q

∂α
= a

{
1− b

b
p

m2 +1

}
(1+ cH)

−de f α f −1

(eα f +1)2
(43b)
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Figure 27. Results of mean square gradient by spectral and sample analysis, with
kl = {2,4,8,16,32,64,128} in both figures: (a) ζ = {4,8,16,32} and H = 0.2; (b) H =
{0.2,0.4,0.6,0.8} and ζ= 4.
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Figure 28. Results of mean square Laplacian, with kl = {2,4,8,16,32,64,128} in both
figures: (a) ζ= {4,8,16,32} and H = 0.2; (b) H = {0.2,0.4,0.6,0.8} and ζ= 4.

The derivatives of m2 and α with respect to ζ could be found from Eq.(41), resulting in the
following asymptotic forms:

∂Q

∂m2

∂m2

∂ζ
∼ 1

p
m2

(p
m2 +1

)2

∂m2

∂ζ
∼ ζ−2+H (44a)

∂Q

∂α

∂α

∂ζ
∼ α f −1(

α f +1
)2

∂α

∂ζ
∼ ζ−2 f H−1 (44b)

These expressions enable us to define a constraint criterion to ensure the derivative of
the flux law with respect to ζ remains non-negative for all ζ. The exponent of ζ in Eq. (44a)
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Figure 29. Comparison of different models which could be used to evaluate spec-
tral moments and the Nayak parameter: (1) discretized geometrical evaluation, (2)
discrete sum for the generative function, (3) continuous version of this discrete sum.

must be lower than the one in Eq.(44a), resulting in the following inequality that the
exponent f should satisfy:

f ≥ 1−H

2H
(45)

The problem with this constraint is that it results in too high values of f for small H and,
ultimately, it diverges for H → 0. In the current study we set the minimal value of the
Hurst exponent to H = 0.25 thus resulting in f ≥ 1.5. The results for derivatives using the
continuous expressions for m2 and α are presented Fig. 30 for H = 0.25, kl = 8, and ξ= 0.05,
and the fitting parameters shown in Table 6. The two derivative terms are distinguished:
one positive, as given by Eq. (43a), and the other negative, as given by Eq. (43a). The full
derivative remains positive, however, thus keeping the required assumptions true, even
for value of ζ significantly far from the initial set of parameter. The absolute values for
these derivatives are also depicted in inset in log-log scale, showing similar power-laws of
the two competing derivatives (in dots) for high values of ζ.
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