
Modeles et numerical methodes in mechanics and physico-chemistry

Practical work on Molecular Dynamics:
Phase Transition

Master program DMS

February 6, 2017

1 Introduction

In this practical work we will simulate phase transitions in argon (Ar), “ter-
restrially the most abundant and industrially the most frequently used of the
noble gases”1 (since it is noble, the gas is monoatomic). The phase diagram for
Ar is given in Fig. 1.

To study the phase transformation, we will use 2D molecular dynamics
simulations (see input data format in Appendix) for a constant volume V =
L× L with periodic boundaries and study macroscopical quantities such as
temperature, pressure and energies of the system of particles. The objective is
to investigate this model system and verify if molecular dynamics simulation
provides us with qualitatively reasonable results.

2 Questions to be addressed in DMS’s reports

• Explain the initial state, which was used for the gas in simulation (spatial
distribution and velocities)

• Explain the temperature control technique

• Provide an extended description of the phase change that you observed
in simulations based on visual observations and change in parameters

3 Provided files

To download all necessary files, go to www.yastrebov.fr/TPMD.zip

1. md sim.inp: input file for MD simulations.

1www.britannica.com

1



Figure 1: Phase diagram of Argon

2



2. Make initial config.py: a draft script to construct the initial distribu-
tion of particles.

3. plot configuration.gpl: a gnuplot script to plot a particular particle
configuration.

4. anim.py, aplot.gpl: files needed to make animation, run anim.py with
an integer number n as an argument, so that only n-th data will be plotted.
For example _anim.py 10

5. Folder CODE. To make the MD code working on your PC, copy this folder
somewhere, enter the folder, compile the code Zmake and copy the library
*.so into the directory where you will run your MD simulations.

4 Initial configuration

Argon data: σ = 3.4 Å, ε = 0.0343 eV, m = 39.95 u. Convert to SI.

• Write a small script to distribute N particles randomly in the simulation
box (see data format in Appendix). Example of a python script is given.
A reasonable number of particles would be N < 1000 for the square box
of side a ≤ 10 nm.

• Run the simulation using **configuration *file your file without
temperature control γ = 0

• Check what happens with macroscopic physical quantities: kinetic and
potential energy, pressure, temperature (these data are plot in file “en-
ergy.md”)

• Find the equilibrium distance between particles for 0K. Based on this
result ensure that initial distribution does not result in huge pressure and
temperatures.

• Implement in the same script Box-Muller algorithm to generate ran-
dom velocities. Box-Muller algorithm consists in generating two ran-
dom number 0 < a,b < 1 from a uniform distribution, next compute
αx =

√
−2ln(a)cos(2πb) and αy =

√
−2ln(a)sin(2πb), then random veloci-

ties can be assigned to particles as

vx = αx
√

kBT/m, vy = αy
√

kBT/m.

To test, construct probability density of resulting distribution for system
of many particles.

• Run the simulation using **configuration *file your file without
temperature control γ = 0. Verify the consistency of the prescribed tem-
perature.

3



5 Computation

• Start the simulation using your generated file.

• Control the temperature using **set temperature,
**temperature adjustment coefficient γ, **adjust temperature every

• Equilibrate the system at T = 300K and next cool it down. Follow changes
in macroscopical quantities. Remember than if the number of particles is
small, you need to consider time averages. Find the phase transition.

• Verify what happends with the particle arrangement.

A Appendix. Input file structure

• **configuration *file filename

Name of the input file containing initial configuration of atoms (positions
and velocities).
The format of this file is the following:
***particles

dim N

id1 x1 y1 vx1 vy1 color1
id2 x2 y2 vx2 vy2 color2
...

Where dim is the system dimension, N is the number of particles, id is
the particle id (int type), x,y are its Cartesian coordinates (double type),
vx,vy are its velocities (double type), color is a color associated with this
particular particle (int type).

• **box size (a,b)

Size of the simulation box (vector type). For example: **box size (1e-9,
1e-9)2 creates a simulation box of size 1nm×1nm with the left lower cor-
ner coordinates (0,0) and the right top coordinates (1e−9,1e−9). Pay at-
tention that coordinates of particles provided in **configuration *file
are compatible with the simulation box.

• **num timesteps Nt

Number of simulation time steps (int type).

• **cut off c

Cut-off distance used in MD simulations, the double number is a mul-
tiplier c for the equilibrium distance computed for given parameters of
Lennard-Jones 6-12 potential, so that rcutoff = cσ21/6. The standard number
used in simulations c = 2.5.

2Do not forget brackets.

4



• **dim d

Problem dimension, here d = 2.

• **set temperature t0 T0 t1 T1 ...tn Tn
A table which prescribes the needed temperature in the simulation. Time
points ti and associated temperature points Ti are provided. A linear
interpolation is used in between, i.e.

∀t ∈ [ti, ti+1] : T(t) = Ti +
t− ti

ti+1− ti
(Ti+1−Ti)

Note that if simulation time t < t0, then temperature T0 is used, equiv-
alently if t > tn, then temperature Tn will be used. By construction the
number of double numbers to be provided should be even.
Example: **set temperature 0. 300. 1.e-12 300. 10.e-12 100.

• **temperature adjustment coefficient γ Provides the coefficient 0 ≤
γ ≤ 1 used to scale the temperature using the following rule:

β =

√
1 +γ

(Tt

T
−1

)
,

where β is the coefficient used to scale the velocity of particles, Tt is the
target temperature, T is the current system temperature.

• **adjust temperature every na

Provides the number of integration time steps between consequitive tem-
perature scaling, i.e. if na = 100, the temperature is scaled on every 100-th
time step.

• **dt dt

Provides the integration time step. It should be big enough to go as fast
as possible and small enough to be accurate and converge at all. If dt is
chosen too high, an error message will appear.

• **integrator StormerVerlet

Integration method: Velocity Störmer-Verlet is used.

• **md output increment Nb TYPE

Outputs energy (file “energy.md”) and particle configuration (file “frames.md”).
Integer value Nb controls the frequency of output, i.e. Nb = 100 means
that energy and configuration is saved every 100 time steps. TYPE can
be either particle coord velocity or energy, in the former case, both
configuration and macroscopic quantities are saved, in the latter case
only macroscopic quantities are saved. The data is saved in adimensional
units:

x′ = x/x̃, v′ = v/ṽ, E′ = E/Ẽ, t′ = t/t̃

The normalization parameters for length x̃, time t̃, velocity ṽ and energy
Ẽ are provide in file “energy.md”.

5



The data format for the particle configuration is the following:
...

# time ti inc/every: inci
color1 x1 y1 vx1 vy1
color2 x2 y2 vx2 vy2
...

colorn xn yn vxn vyn
empty line

# time ti+1 inc/every: inci+1
color1 x1 y1 vx1 vy1
color2 x2 y2 vx2 vy2
...

colorn xn yn vxn vyn
empty line

...

• **potential LJ *powers 6. 12.

Lennard-Jones 6-12 potential is used.

• **MD material LJ 1

*mass m

*epsilon ε
*sigma σ

**return Input data to determine particle characteristics and parame-
ters of the Lennard-Jones potential: mass m, distance σ and energy ε
parameters are given in SI units.

6


