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Introduction

Let’s try to find the stress fields in the vicinity of contact, and displacements on the surface, induced
by three specific contact-pressure distributions defined on the interval x ∈ [−a,a]:

1. Uniform pressure (Fig. 1(a)): p = p0

2. Singular at edges pressure (Fig. 1(b)): p =
p0√

1−x2/a2

3. “Elliptic” pressure (Fig. 1(c)): p = p0
√

1−x2/a2
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Figure 1: Pressure distribution on the half-space: (a) uniform, (b) singular at edges, (c) “elliptic” or
Hertzian pressure.

To find the stress field and the displacement, we will use the following equations (use numerical
integration):

σx(x, y) = −
2y
π

a∫
−b

p(s)(x− s)2 ds
((x− s)2+ y2)2

σy(x, y) = −
2y3

π

a∫
−b

p(s)ds
((x− s)2+ y2)2

σxy(x, y) = −
2y2

π

a∫
−b

p(s)(x− s)ds
((x− s)2+ y2)2

ux(x,0) = −sign(x)
(1−2ν)(1+ν)

2E


x∫
−b

p(s)ds−

a∫
x

p(s)ds

+C1
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uy(x,0) = −
2(1−ν2)
πE

a∫
−b

p(s) ln |x− s|ds+C2

Code

You are provided with two simple Python scripts for evaluation of above-mentioned integrals,
however, you’ll need to substitute correct expression for the integrands.

• To evaluate stresses
compute stresses virgin.py

• To evaluate displacements
compute displacements virgin.py

Objectives

1. Find the stress field in a region which extends to x ∈ [−2a : 2a] and y ∈ [−4a : 0] for all three pressure
distributions mentioned above.

2. Using Hertz’s contact formulae, analyze 2D contact between a flat steel substrate (E = 210 GPa,
ν = 0.3) and a diamond “cylindrical” indenter of radius R = 10 mm. Determine the point of the
onset of plasticity and the corresponding force Fc using von Mises yield criterion for the yield stress
R = 350 MPa. The von Mises stress is given by

σvM =

√
3
2

s
=

: s
=

where the deviator of the stress tensor is given by

s
=
= σ
=
−

1
3

tr(σ
=

)I
=
.

Alternatively, the von Mises stress could be found as:

σvM =

√
1
2

[
(σx−σy)2+ (σx−σz)2+ (σy−σz)2+6

(
σ2

xy+σ
2
yz+σ

2
xz

)]
Hint: don’t forget about σzz.

3. Following a similar procedure, find displacements on the top surface ux(x,0) , uy(x,0) for all three
pressure distributions mentioned above.
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